1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/modules/lora/lora_convert.py
2025-04-27 16:53:22 -05:00

507 lines
21 KiB
Python

import os
import re
import bisect
from typing import Dict
import torch
from modules import shared
debug = os.environ.get('SD_LORA_DEBUG', None) is not None
suffix_conversion = {
"attentions": {},
"resnets": {
"conv1": "in_layers_2",
"conv2": "out_layers_3",
"norm1": "in_layers_0",
"norm2": "out_layers_0",
"time_emb_proj": "emb_layers_1",
"conv_shortcut": "skip_connection",
}
}
re_digits = re.compile(r"\d+")
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
re_compiled = {}
def make_unet_conversion_map() -> Dict[str, str]:
unet_conversion_map_layer = []
for i in range(4): # num_blocks is 3 in sdxl
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3 * i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
# if i > 0: commentout for sdxl
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{2}." # change for sdxl
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2 * j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0.", "norm1."),
("in_layers.2.", "conv1."),
("out_layers.0.", "norm2."),
("out_layers.3.", "conv2."),
("emb_layers.1.", "time_emb_proj."),
("skip_connection.", "conv_shortcut."),
]
unet_conversion_map = []
for sd, hf in unet_conversion_map_layer:
if "resnets" in hf:
for sd_res, hf_res in unet_conversion_map_resnet:
unet_conversion_map.append((sd + sd_res, hf + hf_res))
else:
unet_conversion_map.append((sd, hf))
for j in range(2):
hf_time_embed_prefix = f"time_embedding.linear_{j + 1}."
sd_time_embed_prefix = f"time_embed.{j * 2}."
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
for j in range(2):
hf_label_embed_prefix = f"add_embedding.linear_{j + 1}."
sd_label_embed_prefix = f"label_emb.0.{j * 2}."
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
unet_conversion_map.append(("out.0.", "conv_norm_out."))
unet_conversion_map.append(("out.2.", "conv_out."))
sd_hf_conversion_map = {sd.replace(".", "_")[:-1]: hf.replace(".", "_")[:-1] for sd, hf in unet_conversion_map}
return sd_hf_conversion_map
class KeyConvert:
def __init__(self):
self.is_sdxl = True if shared.sd_model_type == "sdxl" else False
self.UNET_CONVERSION_MAP = make_unet_conversion_map()
self.LORA_PREFIX_UNET = "lora_unet_"
self.LORA_PREFIX_TEXT_ENCODER = "lora_te_"
self.OFT_PREFIX_UNET = "oft_unet_"
# SDXL: must starts with LORA_PREFIX_TEXT_ENCODER
self.LORA_PREFIX_TEXT_ENCODER1 = "lora_te1_"
self.LORA_PREFIX_TEXT_ENCODER2 = "lora_te2_"
def __call__(self, key):
if "diffusion_model" in key: # Fix NTC Slider naming error
key = key.replace("diffusion_model", "lora_unet")
map_keys = list(self.UNET_CONVERSION_MAP.keys()) # prefix of U-Net modules
map_keys.sort()
search_key = key.replace(self.LORA_PREFIX_UNET, "").replace(self.OFT_PREFIX_UNET, "").replace(self.LORA_PREFIX_TEXT_ENCODER1, "").replace(self.LORA_PREFIX_TEXT_ENCODER2, "")
position = bisect.bisect_right(map_keys, search_key)
map_key = map_keys[position - 1]
if search_key.startswith(map_key):
key = key.replace(map_key, self.UNET_CONVERSION_MAP[map_key]).replace("oft", "lora") # pylint: disable=unsubscriptable-object
if "lycoris" in key and "transformer" in key:
key = key.replace("lycoris", "lora_transformer")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
if sd_module is None:
sd_module = shared.sd_model.network_layer_mapping.get(key.replace("guidance", "timestep"), None) # FLUX1 fix
if debug and sd_module is None:
raise RuntimeError(f"LoRA key not found in network_layer_mapping: key={key} mapping={shared.sd_model.network_layer_mapping.keys()}")
return key, sd_module
# Taken from https://github.com/huggingface/diffusers/blob/main/src/diffusers/loaders/lora_conversion_utils.py
# Modified from 'lora_A' and 'lora_B' to 'lora_down' and 'lora_up'
# Added early exit
# The utilities under `_convert_kohya_flux_lora_to_diffusers()`
# are taken from https://github.com/kohya-ss/sd-scripts/blob/a61cf73a5cb5209c3f4d1a3688dd276a4dfd1ecb/networks/convert_flux_lora.py
# All credits go to `kohya-ss`.
def _convert_to_ai_toolkit(sds_sd, ait_sd, sds_key, ait_key):
if sds_key + ".lora_down.weight" not in sds_sd:
return
down_weight = sds_sd.pop(sds_key + ".lora_down.weight")
# scale weight by alpha and dim
rank = down_weight.shape[0]
alpha = sds_sd.pop(sds_key + ".alpha").item() # alpha is scalar
scale = alpha / rank # LoRA is scaled by 'alpha / rank' in forward pass, so we need to scale it back here
# calculate scale_down and scale_up to keep the same value. if scale is 4, scale_down is 2 and scale_up is 2
scale_down = scale
scale_up = 1.0
while scale_down * 2 < scale_up:
scale_down *= 2
scale_up /= 2
ait_sd[ait_key + ".lora_down.weight"] = down_weight * scale_down
ait_sd[ait_key + ".lora_up.weight"] = sds_sd.pop(sds_key + ".lora_up.weight") * scale_up
def _convert_to_ai_toolkit_cat(sds_sd, ait_sd, sds_key, ait_keys, dims=None):
if sds_key + ".lora_down.weight" not in sds_sd:
return
down_weight = sds_sd.pop(sds_key + ".lora_down.weight")
up_weight = sds_sd.pop(sds_key + ".lora_up.weight")
sd_lora_rank = down_weight.shape[0]
# scale weight by alpha and dim
alpha = sds_sd.pop(sds_key + ".alpha")
scale = alpha / sd_lora_rank
# calculate scale_down and scale_up
scale_down = scale
scale_up = 1.0
while scale_down * 2 < scale_up:
scale_down *= 2
scale_up /= 2
down_weight = down_weight * scale_down
up_weight = up_weight * scale_up
# calculate dims if not provided
num_splits = len(ait_keys)
if dims is None:
dims = [up_weight.shape[0] // num_splits] * num_splits
else:
assert sum(dims) == up_weight.shape[0]
# check upweight is sparse or not
is_sparse = False
if sd_lora_rank % num_splits == 0:
ait_rank = sd_lora_rank // num_splits
is_sparse = True
i = 0
for j in range(len(dims)):
for k in range(len(dims)):
if j == k:
continue
is_sparse = is_sparse and torch.all(
up_weight[i : i + dims[j], k * ait_rank : (k + 1) * ait_rank] == 0
)
i += dims[j]
# make ai-toolkit weight
ait_down_keys = [k + ".lora_down.weight" for k in ait_keys]
ait_up_keys = [k + ".lora_up.weight" for k in ait_keys]
if not is_sparse:
# down_weight is copied to each split
ait_sd.update({k: down_weight for k in ait_down_keys})
# up_weight is split to each split
ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))}) # noqa: C416 # pylint: disable=unnecessary-comprehension
else:
# down_weight is chunked to each split
ait_sd.update({k: v for k, v in zip(ait_down_keys, torch.chunk(down_weight, num_splits, dim=0))}) # noqa: C416 # pylint: disable=unnecessary-comprehension
# up_weight is sparse: only non-zero values are copied to each split
i = 0
for j in range(len(dims)):
ait_sd[ait_up_keys[j]] = up_weight[i : i + dims[j], j * ait_rank : (j + 1) * ait_rank].contiguous()
i += dims[j]
def _convert_text_encoder_lora_key(key, lora_name):
"""
Converts a text encoder LoRA key to a Diffusers compatible key.
"""
if lora_name.startswith(("lora_te_", "lora_te1_")):
key_to_replace = "lora_te_" if lora_name.startswith("lora_te_") else "lora_te1_"
else:
key_to_replace = "lora_te2_"
diffusers_name = key.replace(key_to_replace, "").replace("_", ".")
diffusers_name = diffusers_name.replace("text.model", "text_model")
diffusers_name = diffusers_name.replace("self.attn", "self_attn")
diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
diffusers_name = diffusers_name.replace("text.projection", "text_projection")
if "self_attn" in diffusers_name or "text_projection" in diffusers_name:
pass
elif "mlp" in diffusers_name:
# Be aware that this is the new diffusers convention and the rest of the code might
# not utilize it yet.
diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
return diffusers_name
def _convert_kohya_flux_lora_to_diffusers(state_dict):
def _convert_sd_scripts_to_ai_toolkit(sds_sd):
ait_sd = {}
for i in range(19):
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_img_attn_proj",
f"transformer.transformer_blocks.{i}.attn.to_out.0",
)
_convert_to_ai_toolkit_cat(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_img_attn_qkv",
[
f"transformer.transformer_blocks.{i}.attn.to_q",
f"transformer.transformer_blocks.{i}.attn.to_k",
f"transformer.transformer_blocks.{i}.attn.to_v",
],
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_img_mlp_0",
f"transformer.transformer_blocks.{i}.ff.net.0.proj",
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_img_mlp_2",
f"transformer.transformer_blocks.{i}.ff.net.2",
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_img_mod_lin",
f"transformer.transformer_blocks.{i}.norm1.linear",
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_txt_attn_proj",
f"transformer.transformer_blocks.{i}.attn.to_add_out",
)
_convert_to_ai_toolkit_cat(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_txt_attn_qkv",
[
f"transformer.transformer_blocks.{i}.attn.add_q_proj",
f"transformer.transformer_blocks.{i}.attn.add_k_proj",
f"transformer.transformer_blocks.{i}.attn.add_v_proj",
],
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_txt_mlp_0",
f"transformer.transformer_blocks.{i}.ff_context.net.0.proj",
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_txt_mlp_2",
f"transformer.transformer_blocks.{i}.ff_context.net.2",
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_txt_mod_lin",
f"transformer.transformer_blocks.{i}.norm1_context.linear",
)
for i in range(38):
_convert_to_ai_toolkit_cat(
sds_sd,
ait_sd,
f"lora_unet_single_blocks_{i}_linear1",
[
f"transformer.single_transformer_blocks.{i}.attn.to_q",
f"transformer.single_transformer_blocks.{i}.attn.to_k",
f"transformer.single_transformer_blocks.{i}.attn.to_v",
f"transformer.single_transformer_blocks.{i}.proj_mlp",
],
dims=[3072, 3072, 3072, 12288],
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_single_blocks_{i}_linear2",
f"transformer.single_transformer_blocks.{i}.proj_out",
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_single_blocks_{i}_modulation_lin",
f"transformer.single_transformer_blocks.{i}.norm.linear",
)
if len(sds_sd) > 0:
return None
return ait_sd
return _convert_sd_scripts_to_ai_toolkit(state_dict)
def _convert_kohya_sd3_lora_to_diffusers(state_dict):
def _convert_sd_scripts_to_ai_toolkit(sds_sd):
ait_sd = {}
for i in range(38):
_convert_to_ai_toolkit_cat(
sds_sd,
ait_sd,
f"lora_unet_joint_blocks_{i}_context_block_attn_qkv",
[
f"transformer.transformer_blocks.{i}.attn.to_q",
f"transformer.transformer_blocks.{i}.attn.to_k",
f"transformer.transformer_blocks.{i}.attn.to_v",
],
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_joint_blocks_{i}_context_block_mlp_fc1",
f"transformer.transformer_blocks.{i}.ff_context.net.0.proj",
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_joint_blocks_{i}_context_block_mlp_fc2",
f"transformer.transformer_blocks.{i}.ff_context.net.2",
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_joint_blocks_{i}_x_block_mlp_fc1",
f"transformer.transformer_blocks.{i}.ff.net.0.proj",
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_joint_blocks_{i}_x_block_mlp_fc2",
f"transformer.transformer_blocks.{i}.ff.net.2",
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_joint_blocks_{i}_context_block_adaLN_modulation_1",
f"transformer.transformer_blocks.{i}.norm1_context.linear",
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_joint_blocks_{i}_x_block_adaLN_modulation_1",
f"transformer.transformer_blocks.{i}.norm1.linear",
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_joint_blocks_{i}_context_block_attn_proj",
f"transformer.transformer_blocks.{i}.attn.to_add_out",
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_joint_blocks_{i}_x_block_attn_proj",
f"transformer.transformer_blocks.{i}.attn.to_out_0",
)
_convert_to_ai_toolkit_cat(
sds_sd,
ait_sd,
f"lora_unet_joint_blocks_{i}_x_block_attn_qkv",
[
f"transformer.transformer_blocks.{i}.attn.add_q_proj",
f"transformer.transformer_blocks.{i}.attn.add_k_proj",
f"transformer.transformer_blocks.{i}.attn.add_v_proj",
],
)
remaining_keys = list(sds_sd.keys())
te_state_dict = {}
if remaining_keys:
if not all(k.startswith("lora_te1") for k in remaining_keys):
raise ValueError(f"Incompatible keys detected: \n\n {', '.join(remaining_keys)}")
for key in remaining_keys:
if not key.endswith("lora_down.weight"):
continue
lora_name = key.split(".")[0]
lora_name_up = f"{lora_name}.lora_up.weight"
lora_name_alpha = f"{lora_name}.alpha"
diffusers_name = _convert_text_encoder_lora_key(key, lora_name)
sd_lora_rank = 1
if lora_name.startswith(("lora_te_", "lora_te1_")):
down_weight = sds_sd.pop(key)
sd_lora_rank = down_weight.shape[0]
te_state_dict[diffusers_name] = down_weight
te_state_dict[diffusers_name.replace(".down.", ".up.")] = sds_sd.pop(lora_name_up)
if lora_name_alpha in sds_sd:
alpha = sds_sd.pop(lora_name_alpha).item()
scale = alpha / sd_lora_rank
scale_down = scale
scale_up = 1.0
while scale_down * 2 < scale_up:
scale_down *= 2
scale_up /= 2
te_state_dict[diffusers_name] *= scale_down
te_state_dict[diffusers_name.replace(".down.", ".up.")] *= scale_up
if len(sds_sd) > 0:
print(f"Unsupported keys for ai-toolkit: {sds_sd.keys()}")
if te_state_dict:
te_state_dict = {f"text_encoder.{module_name}": params for module_name, params in te_state_dict.items()}
new_state_dict = {**ait_sd, **te_state_dict}
return new_state_dict
return _convert_sd_scripts_to_ai_toolkit(state_dict)
def assign_network_names_to_compvis_modules(sd_model):
if sd_model is None:
return
sd_model = getattr(shared.sd_model, "pipe", shared.sd_model) # wrapped model compatiblility
network_layer_mapping = {}
if hasattr(sd_model, 'text_encoder') and sd_model.text_encoder is not None:
for name, module in sd_model.text_encoder.named_modules():
prefix = "lora_te1_" if hasattr(sd_model, 'text_encoder_2') else "lora_te_"
network_name = prefix + name.replace(".", "_")
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
if hasattr(sd_model, 'text_encoder_2'):
for name, module in sd_model.text_encoder_2.named_modules():
network_name = "lora_te2_" + name.replace(".", "_")
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
if hasattr(sd_model, 'unet'):
for name, module in sd_model.unet.named_modules():
network_name = "lora_unet_" + name.replace(".", "_")
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
if hasattr(sd_model, 'transformer'):
for name, module in sd_model.transformer.named_modules():
network_name = "lora_transformer_" + name.replace(".", "_")
network_layer_mapping[network_name] = module
if "norm" in network_name and "linear" not in network_name and shared.sd_model_type != "sd3":
continue
module.network_layer_name = network_name
shared.sd_model.network_layer_mapping = network_layer_mapping