1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/modules/img2img.py
CalamitousFelicitousness 761ea1c327 feat(settings): add base path support for output folders
Change "Images folder" and "Grids folder" settings to act as base paths
that combine with specific folder settings, rather than replacing them.

- Add resolve_output_path() helper function to modules/paths.py
- Update all output path usages to use combined base + specific paths
- Update gallery API to return resolved paths with display labels
- Update gallery UI to show short labels with full path on hover

Example: If base is "C:\Database\" and specific is "outputs/text",
the resolved path becomes "C:\Database\outputs\text"

Edge cases handled:
- Empty base path: uses specific path directly (backward compatible)
- Absolute specific path: ignores base path
- Empty specific path: uses base path only
2026-01-16 16:24:05 +00:00

336 lines
15 KiB
Python

import os
import itertools # SBM Batch frames
import numpy as np
import filetype
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops, UnidentifiedImageError
from modules import scripts_manager, shared, processing, images, errors
from modules.generation_parameters_copypaste import create_override_settings_dict
from modules.ui_common import plaintext_to_html
from modules.memstats import memory_stats
from modules.paths import resolve_output_path
debug = shared.log.trace if os.environ.get('SD_PROCESS_DEBUG', None) is not None else lambda *args, **kwargs: None
debug('Trace: PROCESS')
def validate_inputs(inputs):
outputs = []
for image in inputs:
if filetype.is_image(image):
outputs.append(image)
else:
shared.log.warning(f'Input skip: file="{image}" filetype={filetype.guess(image)}')
return outputs
def process_batch(p, input_files, input_dir, output_dir, inpaint_mask_dir, args):
# shared.log.debug(f'batch: {input_files}|{input_dir}|{output_dir}|{inpaint_mask_dir}')
processing.fix_seed(p)
image_files = []
if input_files is not None and len(input_files) > 0:
image_files = [f.name for f in input_files]
image_files = validate_inputs(image_files)
shared.log.info(f'Process batch: input images={len(image_files)}')
elif os.path.isdir(input_dir):
image_files = [os.path.join(input_dir, f) for f in os.listdir(input_dir)]
image_files = validate_inputs(image_files)
shared.log.info(f'Process batch: input folder="{input_dir}" images={len(image_files)}')
is_inpaint_batch = False
if inpaint_mask_dir and os.path.isdir(inpaint_mask_dir):
inpaint_masks = [os.path.join(inpaint_mask_dir, f) for f in os.listdir(inpaint_mask_dir)]
inpaint_masks = validate_inputs(inpaint_masks)
is_inpaint_batch = len(inpaint_masks) > 0
shared.log.info(f'Process batch: mask folder="{input_dir}" images={len(inpaint_masks)}')
p.do_not_save_grid = True
p.do_not_save_samples = True
p.default_prompt = p.prompt
if p.n_iter > 1:
p.n_iter = 1
shared.log.warning(f'Process batch: batch_count={p.n_iter} forced to 1')
shared.state.job_count = len(image_files) * p.n_iter
if shared.opts.batch_frame_mode: # SBM Frame mode is on, process each image in batch with same seed
window_size = p.batch_size
btcrept = 1
p.seed = [p.seed] * window_size # SBM MONKEYPATCH: Need to change processing to support a fixed seed value.
p.subseed = [p.subseed] * window_size # SBM MONKEYPATCH
shared.log.info(f"Process batch: inputs={len(image_files)} outputs={p.n_iter}x{len(image_files)} parallel={window_size}")
else: # SBM Frame mode is off, standard operation of repeating same images with sequential seed.
window_size = 1
btcrept = p.batch_size
shared.log.info(f"Process batch: inputs={len(image_files)} outputs={p.n_iter*p.batch_size}x{len(image_files)}")
for i in range(0, len(image_files), window_size):
if shared.state.skipped:
shared.state.skipped = False
if shared.state.interrupted:
break
batch_image_files = image_files[i:i+window_size]
batch_images = []
for image_file in batch_image_files:
try:
img = Image.open(image_file)
img = ImageOps.exif_transpose(img)
batch_images.append(img)
# p.init()
p.width = int(img.width * p.scale_by)
p.height = int(img.height * p.scale_by)
caption_file = os.path.splitext(image_file)[0] + '.txt'
prompt_type='default'
if os.path.exists(caption_file):
with open(caption_file, 'r', encoding='utf8') as f:
p.prompt = f.read()
prompt_type='file'
else:
p.prompt = p.default_prompt
p.all_prompts = None
p.all_negative_prompts = None
p.all_seeds = None
p.all_subseeds = None
shared.log.debug(f'Process batch: image="{image_file}" prompt={prompt_type} i={i+1}/{len(image_files)}')
except UnidentifiedImageError as e:
shared.log.error(f'Process batch: image="{image_file}" {e}')
if len(batch_images) == 0:
shared.log.warning("Process batch: no images found in batch")
continue
batch_images = batch_images * btcrept # Standard mode sends the same image per batchsize.
p.init_images = batch_images
if is_inpaint_batch:
# try to find corresponding mask for an image using simple filename matching
batch_mask_images = []
for image_file in batch_image_files:
mask_image_path = os.path.join(inpaint_mask_dir, os.path.basename(image_file))
# if not found use first one ("same mask for all images" use-case)
if mask_image_path not in inpaint_masks:
mask_image_path = inpaint_masks[0]
mask_image = Image.open(mask_image_path)
batch_mask_images.append(mask_image)
batch_mask_images = batch_mask_images * btcrept
p.image_mask = batch_mask_images
batch_image_files = batch_image_files * btcrept # List used for naming later.
try:
processed = scripts_manager.scripts_img2img.run(p, *args)
if processed is None:
processed = processing.process_images(p)
except Exception as e:
shared.log.error(f'Process batch: {e}')
errors.display(e, 'batch')
processed = None
if processed is None or len(processed.images) == 0:
shared.log.warning(f'Process batch: i={i+1}/{len(image_files)} no images processed')
continue
for n, (image, image_file) in enumerate(itertools.zip_longest(processed.images, batch_image_files)):
if image is None:
continue
basename = ''
if shared.opts.use_original_name_batch:
forced_filename, ext = os.path.splitext(os.path.basename(image_file))
else:
forced_filename = None
ext = shared.opts.samples_format
if len(processed.images) > 1:
basename = f'{n + i}' if shared.opts.batch_frame_mode else f'{n}'
else:
basename = ''
if output_dir == '':
output_dir = shared.opts.outdir_img2img_samples
os.makedirs(output_dir, exist_ok=True)
info, items = images.read_info_from_image(image)
for k, v in items.items():
image.info[k] = v
images.save_image(image, path=output_dir, basename=basename, seed=None, prompt=None, extension=ext, info=info, grid=False, pnginfo_section_name="extras", existing_info=image.info, forced_filename=forced_filename)
processed = scripts_manager.scripts_img2img.after(p, processed, *args)
shared.log.debug(f'Processed: images={len(batch_image_files)} memory={memory_stats()} batch')
def img2img(id_task: str, state: str, mode: int,
prompt, negative_prompt, prompt_styles,
init_img,
sketch,
init_img_with_mask,
inpaint_color_sketch,
inpaint_color_sketch_orig,
init_img_inpaint,
init_mask_inpaint,
steps,
sampler_index,
mask_blur, mask_alpha,
vae_type, tiling, hidiffusion,
detailer_enabled, detailer_prompt, detailer_negative, detailer_steps, detailer_strength, detailer_resolution,
n_iter, batch_size,
guidance_name, guidance_scale, guidance_rescale, guidance_start, guidance_stop,
cfg_scale, image_cfg_scale, diffusers_guidance_rescale, pag_scale, pag_adaptive, cfg_end,
refiner_start,
clip_skip,
denoising_strength,
seed, subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w,
selected_scale_tab,
height, width,
scale_by,
resize_mode, resize_name, resize_context,
inpaint_full_res, inpaint_full_res_padding, inpainting_mask_invert,
img2img_batch_files, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir,
hdr_mode, hdr_brightness, hdr_color, hdr_sharpen, hdr_clamp, hdr_boundary, hdr_threshold, hdr_maximize, hdr_max_center, hdr_max_boundary, hdr_color_picker, hdr_tint_ratio,
enable_hr, hr_sampler_index, hr_denoising_strength, hr_resize_mode, hr_resize_context, hr_upscaler, hr_force, hr_second_pass_steps, hr_scale, hr_resize_x, hr_resize_y, refiner_steps, hr_refiner_start, refiner_prompt, refiner_negative,
override_settings_texts,
*args):
debug(f'img2img: {id_task}')
if shared.sd_model is None:
shared.log.warning('Aborted: op=img model not loaded')
return [], '', '', 'Error: model not loaded'
if sampler_index is None:
shared.log.warning('Sampler: invalid')
sampler_index = 0
mode = int(mode)
image = None
mask = None
override_settings = create_override_settings_dict(override_settings_texts)
if mode == 0: # img2img
if init_img is None:
return [], '', '', 'Error: init image not provided'
image = init_img.convert("RGB")
elif mode == 1: # inpaint
if init_img_with_mask is None:
return [], '', '', 'Error: init image with mask not provided'
image = init_img_with_mask["image"]
mask = init_img_with_mask["mask"]
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
image = image.convert("RGB")
elif mode == 2: # sketch
if sketch is None:
return [], '', '', 'Error: sketch image not provided'
image = sketch.convert("RGB")
elif mode == 3: # composite
if inpaint_color_sketch is None:
return [], '', '', 'Error: color sketch image not provided'
image = inpaint_color_sketch
orig = inpaint_color_sketch_orig or inpaint_color_sketch
pred = np.any(np.array(image) != np.array(orig), axis=-1)
mask = Image.fromarray((255.0 * pred).astype(np.uint8), "L")
mask = ImageEnhance.Brightness(mask).enhance(mask_alpha)
blur = ImageFilter.GaussianBlur(mask_blur)
image = Image.composite(image.filter(blur), orig, mask.filter(blur))
image = image.convert("RGB")
elif mode == 4: # inpaint upload mask
if init_img_inpaint is None:
return [], '', '', 'Error: inpaint image not provided'
image = init_img_inpaint
mask = init_mask_inpaint
elif mode == 5: # process batch
pass # handled later
else:
shared.log.error(f'Image processing unknown mode: {mode}')
if image is not None:
image = ImageOps.exif_transpose(image)
if selected_scale_tab == 1 and resize_mode != 0:
width = int(image.width * scale_by)
height = int(image.height * scale_by)
p = processing.StableDiffusionProcessingImg2Img(
sd_model=shared.sd_model,
outpath_samples=resolve_output_path(shared.opts.outdir_samples, shared.opts.outdir_img2img_samples),
outpath_grids=resolve_output_path(shared.opts.outdir_grids, shared.opts.outdir_img2img_grids),
prompt=prompt,
negative_prompt=negative_prompt,
styles=prompt_styles,
seed=seed,
subseed=subseed,
subseed_strength=subseed_strength,
seed_resize_from_h=seed_resize_from_h,
seed_resize_from_w=seed_resize_from_w,
sampler_name = processing.get_sampler_name(sampler_index, img=True),
batch_size=batch_size,
n_iter=n_iter,
steps=steps,
guidance_name=guidance_name,
guidance_scale=guidance_scale,
guidance_rescale=guidance_rescale,
guidance_start=guidance_start,
guidance_stop=guidance_stop,
cfg_scale=cfg_scale,
cfg_end=cfg_end,
clip_skip=clip_skip,
width=width,
height=height,
vae_type=vae_type,
tiling=tiling,
hidiffusion=hidiffusion,
detailer_enabled=detailer_enabled,
detailer_prompt=detailer_prompt,
detailer_negative=detailer_negative,
detailer_steps=detailer_steps,
detailer_strength=detailer_strength,
detailer_resolution=detailer_resolution,
init_images=[image],
mask=mask,
mask_blur=mask_blur,
resize_mode=resize_mode,
resize_name=resize_name,
resize_context=resize_context,
scale_by=scale_by,
denoising_strength=denoising_strength,
image_cfg_scale=image_cfg_scale,
diffusers_guidance_rescale=diffusers_guidance_rescale,
pag_scale=pag_scale,
pag_adaptive=pag_adaptive,
refiner_start=refiner_start,
inpaint_full_res=inpaint_full_res != 0,
inpaint_full_res_padding=inpaint_full_res_padding,
inpainting_mask_invert=inpainting_mask_invert,
hdr_mode=hdr_mode, hdr_brightness=hdr_brightness, hdr_color=hdr_color, hdr_sharpen=hdr_sharpen, hdr_clamp=hdr_clamp,
hdr_boundary=hdr_boundary, hdr_threshold=hdr_threshold, hdr_maximize=hdr_maximize, hdr_max_center=hdr_max_center, hdr_max_boundary=hdr_max_boundary, hdr_color_picker=hdr_color_picker, hdr_tint_ratio=hdr_tint_ratio,
# refiner
enable_hr=enable_hr,
hr_denoising_strength=hr_denoising_strength,
hr_scale=hr_scale,
hr_resize_mode=hr_resize_mode,
hr_resize_context=hr_resize_context,
hr_upscaler=hr_upscaler,
hr_force=hr_force,
hr_second_pass_steps=hr_second_pass_steps,
hr_resize_x=hr_resize_x,
hr_resize_y=hr_resize_y,
hr_sampler_name = processing.get_sampler_name(hr_sampler_index),
refiner_steps=refiner_steps,
hr_refiner_start=hr_refiner_start,
refiner_prompt=refiner_prompt,
refiner_negative=refiner_negative,
# override
override_settings=override_settings,
)
p.scripts = scripts_manager.scripts_img2img
p.script_args = args
p.state = state
if mask:
p.extra_generation_params["Mask blur"] = mask_blur
p.extra_generation_params["Mask alpha"] = mask_alpha
p.extra_generation_params["Mask padding"] = inpaint_full_res_padding
p.extra_generation_params["Mask invert"] = ['masked', 'invert'][inpainting_mask_invert]
p.extra_generation_params["Mask area"] = ["full", "masked"][inpaint_full_res]
p.is_batch = mode == 5
if p.is_batch:
process_batch(p, img2img_batch_files, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args)
processed = processing.get_processed(p, [], p.seed, "")
else:
processed = scripts_manager.scripts_img2img.run(p, *args)
if processed is None:
processed = processing.process_images(p)
processed = scripts_manager.scripts_img2img.after(p, processed, *args)
p.close()
generation_info_js = processed.js() if processed is not None else ''
if processed is None:
return [], generation_info_js, '', 'Error: no images'
return processed.images, generation_info_js, processed.info, plaintext_to_html(processed.comments)