mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
178 lines
7.5 KiB
Python
178 lines
7.5 KiB
Python
import os
|
|
import time
|
|
from typing import Union
|
|
import threading
|
|
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline
|
|
from modules.shared import log, opts, listdir
|
|
from modules import errors, sd_models
|
|
from modules.control.units.xs_model import ControlNetXSModel
|
|
from modules.control.units.xs_pipe import StableDiffusionControlNetXSPipeline, StableDiffusionXLControlNetXSPipeline
|
|
from modules.control.units import detect
|
|
|
|
|
|
what = 'ControlNet-XS'
|
|
debug = log.trace if os.environ.get('SD_CONTROL_DEBUG', None) is not None else lambda *args, **kwargs: None
|
|
debug('Trace: CONTROL')
|
|
predefined_sd15 = {
|
|
}
|
|
predefined_sdxl = {
|
|
'Canny': 'UmerHA/ConrolNetXS-SDXL-canny',
|
|
'Depth': 'UmerHA/ConrolNetXS-SDXL-depth',
|
|
}
|
|
models = {}
|
|
all_models = {}
|
|
all_models.update(predefined_sd15)
|
|
all_models.update(predefined_sdxl)
|
|
cache_dir = 'models/control/xs'
|
|
load_lock = threading.Lock()
|
|
|
|
|
|
def find_models():
|
|
path = os.path.join(opts.control_dir, 'xs')
|
|
files = listdir(path)
|
|
files = [f for f in files if f.endswith('.safetensors')]
|
|
downloaded_models = {}
|
|
for f in files:
|
|
basename = os.path.splitext(os.path.relpath(f, path))[0]
|
|
downloaded_models[basename] = os.path.join(path, f)
|
|
all_models.update(downloaded_models)
|
|
return downloaded_models
|
|
|
|
|
|
def list_models(refresh=False):
|
|
global models # pylint: disable=global-statement
|
|
import modules.shared
|
|
if not refresh and len(models) > 0:
|
|
return models
|
|
models = {}
|
|
if modules.shared.sd_model_type == 'none':
|
|
models = ['None']
|
|
elif modules.shared.sd_model_type == 'sdxl':
|
|
models = ['None'] + sorted(predefined_sdxl) + sorted(find_models())
|
|
elif modules.shared.sd_model_type == 'sd':
|
|
models = ['None'] + sorted(predefined_sd15) + sorted(find_models())
|
|
else:
|
|
log.error(f'Control {what} model list failed: unknown model type')
|
|
models = ['None'] + sorted(predefined_sd15) + sorted(predefined_sdxl) + sorted(find_models())
|
|
debug(f'Control list {what}: path={cache_dir} models={models}')
|
|
return models
|
|
|
|
|
|
class ControlNetXS():
|
|
def __init__(self, model_id: str = None, device = None, dtype = None, load_config = None):
|
|
self.model: ControlNetXSModel = None
|
|
self.model_id: str = model_id
|
|
self.device = device
|
|
self.dtype = dtype
|
|
self.load_config = { 'cache_dir': cache_dir, 'learn_embedding': True }
|
|
if load_config is not None:
|
|
self.load_config.update(load_config)
|
|
if model_id is not None:
|
|
self.load()
|
|
|
|
def __str__(self):
|
|
return f' ControlNetXS(id={self.model_id} model={self.model.__class__.__name__})' if self.model_id and self.model else ''
|
|
|
|
def reset(self):
|
|
if self.model is not None:
|
|
debug(f'Control {what} model unloaded')
|
|
self.model = None
|
|
self.model_id = None
|
|
|
|
def load(self, model_id: str = None, time_embedding_mix: float = 0.0, force: bool = True) -> str:
|
|
with load_lock:
|
|
try:
|
|
t0 = time.time()
|
|
model_id = model_id or self.model_id
|
|
if model_id is None or model_id == 'None':
|
|
self.reset()
|
|
return
|
|
if model_id not in all_models:
|
|
log.error(f'Control {what} unknown model: id="{model_id}" available={list(all_models)}')
|
|
return
|
|
model_path = all_models[model_id]
|
|
if model_path == '':
|
|
return
|
|
if model_path is None:
|
|
log.error(f'Control {what} model load failed: id="{model_id}" error=unknown model id')
|
|
return
|
|
if model_id == self.model_id and not force:
|
|
# log.debug(f'Control {what} model: id="{model_id}" path="{model_path}" already loaded')
|
|
return
|
|
self.load_config['time_embedding_mix'] = time_embedding_mix
|
|
if opts.offline_mode:
|
|
self.load_config["local_files_only"] = True
|
|
os.environ['HF_HUB_OFFLINE'] = '1'
|
|
else:
|
|
os.environ.pop('HF_HUB_OFFLINE', None)
|
|
os.unsetenv('HF_HUB_OFFLINE')
|
|
log.debug(f'Control {what} model loading: id="{model_id}" path="{model_path}" {self.load_config}')
|
|
if model_path.endswith('.safetensors'):
|
|
self.model = ControlNetXSModel.from_single_file(model_path, **self.load_config)
|
|
else:
|
|
self.model = ControlNetXSModel.from_pretrained(model_path, **self.load_config)
|
|
if self.device is not None:
|
|
self.model.to(self.device)
|
|
if self.dtype is not None:
|
|
self.model.to(self.dtype)
|
|
t1 = time.time()
|
|
self.model_id = model_id
|
|
log.debug(f'Control {what} model loaded: id="{model_id}" path="{model_path}" time={t1-t0:.2f}')
|
|
return f'{what} loaded model: {model_id}'
|
|
except Exception as e:
|
|
log.error(f'Control {what} model load failed: id="{model_id}" error={e}')
|
|
errors.display(e, f'Control {what} load')
|
|
return f'{what} failed to load model: {model_id}'
|
|
|
|
|
|
class ControlNetXSPipeline():
|
|
def __init__(self, controlnet: Union[ControlNetXSModel, list[ControlNetXSModel]], pipeline: Union[StableDiffusionXLPipeline, StableDiffusionPipeline], dtype = None):
|
|
t0 = time.time()
|
|
self.orig_pipeline = pipeline
|
|
self.pipeline = None
|
|
if pipeline is None:
|
|
log.error(f'Control {what} pipeline: model not loaded')
|
|
return
|
|
if detect.is_sdxl(pipeline):
|
|
self.pipeline = StableDiffusionXLControlNetXSPipeline(
|
|
vae=pipeline.vae,
|
|
text_encoder=pipeline.text_encoder,
|
|
text_encoder_2=pipeline.text_encoder_2,
|
|
tokenizer=pipeline.tokenizer,
|
|
tokenizer_2=pipeline.tokenizer_2,
|
|
unet=pipeline.unet,
|
|
scheduler=pipeline.scheduler,
|
|
# feature_extractor=getattr(pipeline, 'feature_extractor', None),
|
|
controlnet=controlnet, # can be a list
|
|
)
|
|
sd_models.move_model(self.pipeline, pipeline.device)
|
|
sd_models.apply_balanced_offload(self.pipeline, force=True)
|
|
elif detect.is_sd15(pipeline):
|
|
self.pipeline = StableDiffusionControlNetXSPipeline(
|
|
vae=pipeline.vae,
|
|
text_encoder=pipeline.text_encoder,
|
|
tokenizer=pipeline.tokenizer,
|
|
unet=pipeline.unet,
|
|
scheduler=pipeline.scheduler,
|
|
feature_extractor=getattr(pipeline, 'feature_extractor', None),
|
|
requires_safety_checker=False,
|
|
safety_checker=None,
|
|
controlnet=controlnet, # can be a list
|
|
)
|
|
sd_models.move_model(self.pipeline, pipeline.device)
|
|
sd_models.apply_balanced_offload(self.pipeline, force=True)
|
|
else:
|
|
log.error(f'Control {what} pipeline: class={pipeline.__class__.__name__} unsupported model type')
|
|
return
|
|
if dtype is not None and self.pipeline is not None:
|
|
self.pipeline = self.pipeline.to(dtype)
|
|
t1 = time.time()
|
|
if self.pipeline is not None:
|
|
log.debug(f'Control {what} pipeline: class={self.pipeline.__class__.__name__} time={t1-t0:.2f}')
|
|
else:
|
|
log.error(f'Control {what} pipeline: not initialized')
|
|
|
|
def restore(self):
|
|
self.pipeline = None
|
|
return self.orig_pipeline
|