1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/modules/control/units/controlnet.py
vladmandic 71d3482168 cleanup model types
Signed-off-by: vladmandic <mandic00@live.com>
2026-01-15 08:30:48 +01:00

576 lines
29 KiB
Python

import os
import time
import threading
from typing import Union
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, FluxPipeline, StableDiffusion3Pipeline, ControlNetModel
from modules.control.units import detect
from modules.shared import log, opts, cmd_opts, state, listdir
from modules import errors, sd_models, devices, model_quant
from modules.processing import StableDiffusionProcessingControl
what = 'ControlNet'
debug = os.environ.get('SD_CONTROL_DEBUG', None) is not None
debug_log = log.trace if os.environ.get('SD_CONTROL_DEBUG', None) is not None else lambda *args, **kwargs: None
predefined_sd15 = {
'Canny': "lllyasviel/control_v11p_sd15_canny",
'Depth': "lllyasviel/control_v11f1p_sd15_depth",
'HED': "lllyasviel/sd-controlnet-hed",
'IP2P': "lllyasviel/control_v11e_sd15_ip2p",
'LineArt': "lllyasviel/control_v11p_sd15_lineart",
'LineArt Anime': "lllyasviel/control_v11p_sd15s2_lineart_anime",
'MLDS': "lllyasviel/control_v11p_sd15_mlsd",
'NormalBae': "lllyasviel/control_v11p_sd15_normalbae",
'OpenPose': "lllyasviel/control_v11p_sd15_openpose",
'Scribble': "lllyasviel/control_v11p_sd15_scribble",
'Segment': "lllyasviel/control_v11p_sd15_seg",
'Shuffle': "lllyasviel/control_v11e_sd15_shuffle",
'SoftEdge': "lllyasviel/control_v11p_sd15_softedge",
'Tile': "lllyasviel/control_v11f1e_sd15_tile",
'Depth Anything': 'vladmandic/depth-anything',
'Canny FP16': 'Aptronym/SDNext/ControlNet11/controlnet11Models_canny.safetensors',
'Inpaint FP16': 'Aptronym/SDNext/ControlNet11/controlnet11Models_inpaint.safetensors',
'LineArt Anime FP16': 'Aptronym/SDNext/ControlNet11/controlnet11Models_animeline.safetensors',
'LineArt FP16': 'Aptronym/SDNext/ControlNet11/controlnet11Models_lineart.safetensors',
'MLSD FP16': 'Aptronym/SDNext/ControlNet11/controlnet11Models_mlsd.safetensors',
'NormalBae FP16': 'Aptronym/SDNext/ControlNet11/controlnet11Models_normal.safetensors',
'OpenPose FP16': 'Aptronym/SDNext/ControlNet11/controlnet11Models_openpose.safetensors',
'Pix2Pix FP16': 'Aptronym/SDNext/ControlNet11/controlnet11Models_pix2pix.safetensors',
'Scribble FP16': 'Aptronym/SDNext/ControlNet11/controlnet11Models_scribble.safetensors',
'Segment FP16': 'Aptronym/SDNext/ControlNet11/controlnet11Models_seg.safetensors',
'Shuffle FP16': 'Aptronym/SDNext/ControlNet11/controlnet11Models_shuffle.safetensors',
'SoftEdge FP16': 'Aptronym/SDNext/ControlNet11/controlnet11Models_softedge.safetensors',
'Tile FP16': 'Aptronym/SDNext/ControlNet11/controlnet11Models_tileE.safetensors',
'CiaraRowles TemporalNet': "CiaraRowles/TemporalNet",
'Ciaochaos Recolor': 'ioclab/control_v1p_sd15_brightness',
'Ciaochaos Illumination': 'ioclab/control_v1u_sd15_illumination/illumination20000.safetensors',
}
predefined_sdxl = {
'Canny Small XL': 'diffusers/controlnet-canny-sdxl-1.0-small',
'Canny Mid XL': 'diffusers/controlnet-canny-sdxl-1.0-mid',
'Canny XL': 'diffusers/controlnet-canny-sdxl-1.0',
'Depth Zoe XL': 'diffusers/controlnet-zoe-depth-sdxl-1.0',
'Depth Mid XL': 'diffusers/controlnet-depth-sdxl-1.0-mid',
'OpenPose XL': 'thibaud/controlnet-openpose-sdxl-1.0/bin',
'Xinsir Union XL': 'xinsir/controlnet-union-sdxl-1.0',
'Xinsir ProMax XL': 'brad-twinkl/controlnet-union-sdxl-1.0-promax',
'Xinsir OpenPose XL': 'xinsir/controlnet-openpose-sdxl-1.0',
'Xinsir Canny XL': 'xinsir/controlnet-canny-sdxl-1.0',
'Xinsir Depth XL': 'xinsir/controlnet-depth-sdxl-1.0',
'Xinsir Scribble XL': 'xinsir/controlnet-scribble-sdxl-1.0',
'Xinsir Anime Painter XL': 'xinsir/anime-painter',
'Xinsir Tile XL': 'xinsir/controlnet-tile-sdxl-1.0',
'NoobAI Canny XL': 'Eugeoter/noob-sdxl-controlnet-canny',
'NoobAI Lineart Anime XL': 'Eugeoter/noob-sdxl-controlnet-lineart_anime',
'NoobAI Depth XL': 'Eugeoter/noob-sdxl-controlnet-depth',
'NoobAI Normal XL': 'Eugeoter/noob-sdxl-controlnet-normal',
'NoobAI SoftEdge XL': 'Eugeoter/noob-sdxl-controlnet-softedge_hed',
'NoobAI OpenPose XL': 'einar77/noob-openpose',
'TTPlanet Tile Realistic XL': 'Yakonrus/SDXL_Controlnet_Tile_Realistic_v2',
# 'StabilityAI Canny R128': 'stabilityai/control-lora/control-LoRAs-rank128/control-lora-canny-rank128.safetensors',
# 'StabilityAI Depth R128': 'stabilityai/control-lora/control-LoRAs-rank128/control-lora-depth-rank128.safetensors',
# 'StabilityAI Recolor R128': 'stabilityai/control-lora/control-LoRAs-rank128/control-lora-recolor-rank128.safetensors',
# 'StabilityAI Sketch R128': 'stabilityai/control-lora/control-LoRAs-rank128/control-lora-sketch-rank128-metadata.safetensors',
# 'StabilityAI Canny R256': 'stabilityai/control-lora/control-LoRAs-rank256/control-lora-canny-rank256.safetensors',
# 'StabilityAI Depth R256': 'stabilityai/control-lora/control-LoRAs-rank256/control-lora-depth-rank256.safetensors',
# 'StabilityAI Recolor R256': 'stabilityai/control-lora/control-LoRAs-rank256/control-lora-recolor-rank256.safetensors',
# 'StabilityAI Sketch R256': 'stabilityai/control-lora/control-LoRAs-rank256/control-lora-sketch-rank256.safetensors',
}
predefined_f1 = {
"InstantX Union F1": 'InstantX/FLUX.1-dev-Controlnet-Union',
"InstantX Canny F1": 'InstantX/FLUX.1-dev-Controlnet-Canny',
"JasperAI Depth F1": 'jasperai/Flux.1-dev-Controlnet-Depth',
"BlackForrestLabs Canny LoRA F1": '/huggingface.co/black-forest-labs/FLUX.1-Canny-dev-lora/flux1-canny-dev-lora.safetensors',
"BlackForrestLabs Depth LoRA F1": '/huggingface.co/black-forest-labs/FLUX.1-Depth-dev-lora/flux1-depth-dev-lora.safetensors',
"JasperAI Surface Normals F1": 'jasperai/Flux.1-dev-Controlnet-Surface-Normals',
"JasperAI Upscaler F1": 'jasperai/Flux.1-dev-Controlnet-Upscaler',
"Shakker-Labs Union F1": 'Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro',
"Shakker-Labs Pose F1": 'Shakker-Labs/FLUX.1-dev-ControlNet-Pose',
"Shakker-Labs Depth F1": 'Shakker-Labs/FLUX.1-dev-ControlNet-Depth',
"XLabs-AI Canny F1": 'XLabs-AI/flux-controlnet-canny-diffusers',
"XLabs-AI Depth F1": 'XLabs-AI/flux-controlnet-depth-diffusers',
"XLabs-AI HED F1": 'XLabs-AI/flux-controlnet-hed-diffusers',
"LibreFlux Segment F1": 'neuralvfx/LibreFlux-ControlNet',
}
predefined_sd3 = {
"StabilityAI Canny SD35": 'diffusers-internal-dev/sd35-controlnet-canny-8b',
"StabilityAI Depth SD35": 'diffusers-internal-dev/sd35-controlnet-depth-8b',
"StabilityAI Blur SD35": 'diffusers-internal-dev/sd35-controlnet-blur-8b',
"InstantX Canny SD35": 'InstantX/SD3-Controlnet-Canny',
"InstantX Pose SD35": 'InstantX/SD3-Controlnet-Pose',
"InstantX Depth SD35": 'InstantX/SD3-Controlnet-Depth',
"InstantX Tile SD35": 'InstantX/SD3-Controlnet-Tile',
"Alimama Inpainting SD35": 'alimama-creative/SD3-Controlnet-Inpainting',
"Alimama SoftEdge SD35": 'alimama-creative/SD3-Controlnet-Softedge',
}
predefined_qwen = {
"InstantX Union Qwen": 'InstantX/Qwen-Image-ControlNet-Union',
}
predefined_hunyuandit = {
"HunyuanDiT Canny": 'Tencent-Hunyuan/HunyuanDiT-v1.2-ControlNet-Diffusers-Canny',
"HunyuanDiT Pose": 'Tencent-Hunyuan/HunyuanDiT-v1.2-ControlNet-Diffusers-Pose',
"HunyuanDiT Depth": 'Tencent-Hunyuan/HunyuanDiT-v1.2-ControlNet-Diffusers-Depth',
}
predefined_zimage = {
"Z-Image-Turbo Union 1.0": 'hlky/Z-Image-Turbo-Fun-Controlnet-Union',
"Z-Image-Turbo Union 2.0": 'hlky/Z-Image-Turbo-Fun-Controlnet-Union-2.0',
"Z-Image-Turbo Union 2.1": 'hlky/Z-Image-Turbo-Fun-Controlnet-Union-2.1',
}
variants = {
'NoobAI Canny XL': 'fp16',
'NoobAI Lineart Anime XL': 'fp16',
'NoobAI Depth XL': 'fp16',
'NoobAI Normal XL': 'fp16',
'NoobAI SoftEdge XL': 'fp16',
'TTPlanet Tile Realistic XL': 'fp16',
}
subfolders = {
"LibreFlux Segment F1": 'controlnet',
}
remote_code = {
"LibreFlux Segment F1": True,
}
models = {}
all_models = {}
all_models.update(predefined_sd15)
all_models.update(predefined_sdxl)
all_models.update(predefined_f1)
all_models.update(predefined_sd3)
all_models.update(predefined_qwen)
all_models.update(predefined_hunyuandit)
all_models.update(predefined_zimage)
cache_dir = 'models/control/controlnet'
load_lock = threading.Lock()
def find_models():
path = os.path.join(opts.control_dir, 'controlnet')
files = listdir(path)
folders = [f for f in files if os.path.isdir(f) if os.path.exists(os.path.join(f, 'config.json'))]
files = [f for f in files if f.endswith('.safetensors')]
downloaded_models = {}
for f in files:
basename = os.path.splitext(os.path.relpath(f, path))[0]
downloaded_models[basename] = f
for f in folders:
basename = os.path.relpath(f, path)
downloaded_models[basename] = f
all_models.update(downloaded_models)
return downloaded_models
find_models()
def api_list_models(model_type: str = None):
import modules.shared
model_type = model_type or modules.shared.sd_model_type
model_list = []
if model_type == 'sd' or model_type == 'all':
model_list += list(predefined_sd15)
if model_type == 'sdxl' or model_type == 'all':
model_list += list(predefined_sdxl)
if model_type == 'f1' or model_type == 'all':
model_list += list(predefined_f1)
if model_type == 'sd3' or model_type == 'all':
model_list += list(predefined_sd3)
if model_type == 'qwen' or model_type == 'all':
model_list += list(predefined_qwen)
if model_type == 'hunyuandit' or model_type == 'all':
model_list += list(predefined_hunyuandit)
if model_type == 'zimage':
model_list += list(predefined_zimage)
model_list += sorted(find_models())
return model_list
def list_models(refresh=False):
import modules.shared
global models # pylint: disable=global-statement
if not refresh and len(models) > 0:
return models
models = {}
if modules.shared.sd_model_type == 'none':
models = ['None']
elif modules.shared.sd_model_type == 'sdxl':
models = ['None'] + list(predefined_sdxl) + sorted(find_models())
elif modules.shared.sd_model_type == 'sd':
models = ['None'] + list(predefined_sd15) + sorted(find_models())
elif modules.shared.sd_model_type == 'f1':
models = ['None'] + list(predefined_f1) + sorted(find_models())
elif modules.shared.sd_model_type == 'sd3':
models = ['None'] + list(predefined_sd3) + sorted(find_models())
elif modules.shared.sd_model_type == 'qwen':
models = ['None'] + list(predefined_qwen) + sorted(find_models())
elif modules.shared.sd_model_type == 'hunyuandit':
models = ['None'] + list(predefined_hunyuandit) + sorted(find_models())
elif modules.shared.sd_model_type == 'zimage':
models = ['None'] + list(predefined_zimage) + sorted(find_models())
else:
log.warning(f'Control {what} model list failed: unknown model type')
models = ['None'] + list(all_models) + sorted(find_models())
debug_log(f'Control list {what}: path={cache_dir} models={models}')
return models
class ControlNet():
def __init__(self, model_id: str = None, device = None, dtype = None, load_config = None):
self.model: ControlNetModel = None
self.model_id: str = model_id
self.device = device
self.dtype = dtype
self.load_config = { 'cache_dir': cache_dir }
if load_config is not None:
self.load_config.update(load_config)
if opts.offline_mode:
self.load_config["local_files_only"] = True
os.environ['HF_HUB_OFFLINE'] = '1'
else:
os.environ.pop('HF_HUB_OFFLINE', None)
os.unsetenv('HF_HUB_OFFLINE')
if model_id is not None:
self.load()
def __str__(self):
return f' ControlNet(id={self.model_id} model={self.model.__class__.__name__})' if self.model_id and self.model else ''
def reset(self):
if self.model is not None:
debug_log(f'Control {what} model unloaded')
self.model = None
self.model_id = None
devices.torch_gc(force=True, reason='controlnet')
def get_class(self, model_id:str=''):
from modules import shared
if shared.sd_model_type == 'none':
_load = shared.sd_model # trigger a load
if shared.sd_model_type == 'sd':
from diffusers import ControlNetModel as cls # pylint: disable=reimported
config = 'lllyasviel/control_v11p_sd15_canny'
elif shared.sd_model_type == 'sdxl':
if 'union' in model_id.lower():
from diffusers import ControlNetUnionModel as cls
config = 'xinsir/controlnet-union-sdxl-1.0'
elif 'promax' in model_id.lower():
from diffusers import ControlNetUnionModel as cls
config = 'brad-twinkl/controlnet-union-sdxl-1.0-promax'
else:
from diffusers import ControlNetModel as cls # pylint: disable=reimported # sdxl shares same model class
config = 'Eugeoter/noob-sdxl-controlnet-canny'
elif shared.sd_model_type == 'f1':
from diffusers import FluxControlNetModel as cls
config = 'InstantX/FLUX.1-dev-Controlnet-Union'
elif shared.sd_model_type == 'sd3':
from diffusers import SD3ControlNetModel as cls
config = 'InstantX/SD3-Controlnet-Canny'
elif shared.sd_model_type == 'qwen':
from diffusers import QwenImageControlNetModel as cls
config = 'InstantX/Qwen-Image-ControlNet-Union'
elif shared.sd_model_type == 'hunyuandit':
from diffusers import HunyuanDiT2DControlNetModel as cls
config = 'Tencent-Hunyuan/HunyuanDiT-v1.2-ControlNet-Diffusers-Canny'
elif shared.sd_model_type == 'zimage':
from diffusers import ZImageControlNetModel as cls
if '2.0' in model_id:
config = 'hlky/Z-Image-Turbo-Fun-Controlnet-Union-2.0'
elif '2.1' in model_id:
config = 'hlky/Z-Image-Turbo-Fun-Controlnet-Union-2.1'
else:
config = 'hlky/Z-Image-Turbo-Fun-Controlnet-Union'
else:
log.error(f'Control {what}: type={shared.sd_model_type} unsupported model')
return None, None
return cls, config
def load_safetensors(self, model_id, model_path, cls, config): # pylint: disable=unused-argument
name = os.path.splitext(model_path)[0]
config_path = None
if not os.path.exists(model_path):
import huggingface_hub as hf
parts = model_path.split('/')
repo_id = f'{parts[0]}/{parts[1]}'
filename = os.path.splitext('/'.join(parts[2:]))[0]
model_path = hf.hf_hub_download(repo_id=repo_id, filename=f'{filename}.safetensors', cache_dir=cache_dir)
if config_path is None:
try:
config_path = hf.hf_hub_download(repo_id=repo_id, filename=f'{filename}.yaml', cache_dir=cache_dir)
except Exception:
pass # no yaml file
if config_path is None:
try:
config_path = hf.hf_hub_download(repo_id=repo_id, filename=f'{filename}.json', cache_dir=cache_dir)
except Exception:
pass # no yaml file
elif os.path.exists(name + '.yaml'):
config_path = f'{name}.yaml'
elif os.path.exists(name + '.json'):
config_path = f'{name}.json'
if config_path is not None:
self.load_config['original_config_file '] = config_path
self.model = cls.from_single_file(model_path, config=config, **self.load_config)
def load(self, model_id: str = None, force: bool = False) -> str:
with load_lock:
try:
t0 = time.time()
model_id = model_id or self.model_id
if model_id is None or model_id == 'None':
self.reset()
return
if model_id not in all_models:
log.error(f'Control {what}: id="{model_id}" available={list(all_models)} unknown model')
return
model_path = all_models[model_id]
if model_path == '':
return
if model_path is None:
log.error(f'Control {what} model load: id="{model_id}" unknown model id')
return
if 'lora' in model_id.lower():
self.model = model_path
return
if model_id == self.model_id and not force:
# log.debug(f'Control {what} model: id="{model_id}" path="{model_path}" already loaded')
return
log.debug(f'Control {what} model loading: id="{model_id}" path="{model_path}"')
cls, config = self.get_class(model_id)
if cls is None:
log.error(f'Control {what} model load: id="{model_id}" unknown base model')
return
self.reset()
jobid = state.begin(f'Load {what}')
if model_path.endswith('.safetensors'):
self.load_safetensors(model_id, model_path, cls, config)
else:
kwargs = {}
if '/bin' in model_path:
model_path = model_path.replace('/bin', '')
self.load_config['use_safetensors'] = False
else:
self.load_config['use_safetensors'] = True
if variants.get(model_id, None) is not None:
kwargs['variant'] = variants[model_id]
if subfolders.get(model_id, None) is not None:
kwargs['subfolder'] = subfolders[model_id]
if remote_code.get(model_id, None) is not None:
kwargs['trust_remote_code'] = remote_code[model_id]
try:
self.model = cls.from_pretrained(model_path, **self.load_config, **kwargs)
except Exception as e:
log.error(f'Control {what} model load: id="{model_id}" {e}')
if debug:
errors.display(e, 'Control')
if self.model is None:
return
if not cmd_opts.lowvram: # lowvram will cause unet<->controlnet to ping-pong but saves more memory
self.model.offload_never = True
if self.dtype is not None:
self.model.to(self.dtype)
if self.device is not None:
if (opts.diffusers_offload_mode != 'balanced') and hasattr(self.model, 'to'):
try:
self.model.to(self.device)
except Exception as e:
if 'Cannot copy out of meta tensor' in str(e):
self.model.to_empty(device=self.device)
if "Control" in opts.sdnq_quantize_weights:
try:
log.debug(f'Control {what} model SDNQ quantize: id="{model_id}"')
from modules.model_quant import sdnq_quantize_model
self.model = sdnq_quantize_model(self.model)
except Exception as e:
log.error(f'Control {what} model SDNQ Compression failed: id="{model_id}" {e}')
elif "Control" in opts.optimum_quanto_weights:
try:
log.debug(f'Control {what} model Optimum Quanto: id="{model_id}"')
model_quant.load_quanto('Load model: type=Control')
from modules.model_quant import optimum_quanto_model
self.model = optimum_quanto_model(self.model)
except Exception as e:
log.error(f'Control {what} model Optimum Quanto: id="{model_id}" {e}')
elif "Control" in opts.torchao_quantization:
try:
log.debug(f'Control {what} model Torch AO: id="{model_id}"')
model_quant.load_torchao('Load model: type=Control')
from modules.model_quant import torchao_quantization
self.model = torchao_quantization(self.model)
except Exception as e:
log.error(f'Control {what} model Torch AO: id="{model_id}" {e}')
if self.device is not None:
sd_models.move_model(self.model, self.device)
if "Control" in opts.cuda_compile:
try:
from modules.sd_models_compile import compile_torch
self.model = compile_torch(self.model, apply_to_components=False, op="Control")
except Exception as e:
log.warning(f"Control compile error: {e}")
t1 = time.time()
self.model_id = model_id
log.info(f'Control {what} model loaded: id="{self.model_id}" path="{model_path}" cls={cls.__name__} time={t1-t0:.2f}')
state.end(jobid)
return f'{what} loaded model: {self.model_id}'
except Exception as e:
log.error(f'Control {what} model load: id="{model_id}" {e}')
errors.display(e, f'Control {what} load')
return f'{what} failed to load model: {model_id}'
class ControlNetPipeline():
def __init__(self,
controlnet: Union[ControlNetModel, list[ControlNetModel]],
pipeline: Union[StableDiffusionXLPipeline, StableDiffusionPipeline, FluxPipeline, StableDiffusion3Pipeline],
dtype = None,
p: StableDiffusionProcessingControl = None, # pylint: disable=unused-argument
):
t0 = time.time()
self.orig_pipeline = pipeline
self.pipeline = None
controlnets = controlnet if isinstance(controlnet, list) else [controlnet]
loras = [cn for cn in controlnets if isinstance(cn, str)]
controlnets = [cn for cn in controlnets if not isinstance(cn, str)]
if pipeline is None:
log.error('Control model pipeline: model not loaded')
return
elif detect.is_sdxl(pipeline) and len(controlnets) > 0:
from diffusers import StableDiffusionXLControlNetPipeline, StableDiffusionXLControlNetUnionPipeline
classes = [c.__class__.__name__ for c in controlnets]
if any(c == 'ControlNetUnionModel' for c in classes):
if not all(c == 'ControlNetUnionModel' for c in classes):
log.warning(f'Control {what}: units={classes} mixed type is not supported')
return
if isinstance(controlnets, list) and len(controlnets) == 1:
controlnets = controlnets[0]
cls = StableDiffusionXLControlNetUnionPipeline
else:
cls = StableDiffusionXLControlNetPipeline
self.pipeline = cls(
vae=pipeline.vae,
text_encoder=pipeline.text_encoder,
text_encoder_2=pipeline.text_encoder_2,
tokenizer=pipeline.tokenizer,
tokenizer_2=pipeline.tokenizer_2,
unet=pipeline.unet,
scheduler=pipeline.scheduler,
feature_extractor=getattr(pipeline, 'feature_extractor', None),
image_encoder=getattr(pipeline, 'image_encoder', None),
controlnet=controlnets, # can be a list
)
elif detect.is_f1(pipeline) and len(controlnets) > 0:
from diffusers import FluxControlNetPipeline
self.pipeline = FluxControlNetPipeline(
vae=pipeline.vae.to(devices.device),
text_encoder=pipeline.text_encoder,
text_encoder_2=pipeline.text_encoder_2,
tokenizer=pipeline.tokenizer,
tokenizer_2=pipeline.tokenizer_2,
transformer=pipeline.transformer,
scheduler=pipeline.scheduler,
controlnet=controlnets, # can be a list
)
elif detect.is_sd3(pipeline) and len(controlnets) > 0:
from diffusers import StableDiffusion3ControlNetPipeline
self.pipeline = StableDiffusion3ControlNetPipeline(
vae=pipeline.vae,
text_encoder=pipeline.text_encoder,
text_encoder_2=pipeline.text_encoder_2,
text_encoder_3=pipeline.text_encoder_3,
tokenizer=pipeline.tokenizer,
tokenizer_2=pipeline.tokenizer_2,
tokenizer_3=pipeline.tokenizer_3,
transformer=pipeline.transformer,
scheduler=pipeline.scheduler,
controlnet=controlnets, # can be a list
)
elif detect.is_sd15(pipeline) and len(controlnets) > 0:
from diffusers import StableDiffusionControlNetPipeline
self.pipeline = StableDiffusionControlNetPipeline(
vae=pipeline.vae,
text_encoder=pipeline.text_encoder,
tokenizer=pipeline.tokenizer,
unet=pipeline.unet,
scheduler=pipeline.scheduler,
feature_extractor=getattr(pipeline, 'feature_extractor', None),
image_encoder=getattr(pipeline, 'image_encoder', None),
requires_safety_checker=False,
safety_checker=None,
controlnet=controlnets, # can be a list
)
sd_models.move_model(self.pipeline, pipeline.device)
elif detect.is_qwen(pipeline) and len(controlnets) > 0:
from diffusers import QwenImageControlNetPipeline
self.pipeline = QwenImageControlNetPipeline(
vae=pipeline.vae,
text_encoder=pipeline.text_encoder,
tokenizer=pipeline.tokenizer,
transformer=pipeline.transformer,
scheduler=pipeline.scheduler,
controlnet=controlnets[0] if isinstance(controlnets, list) else controlnets, # can be a list
)
elif detect.is_hunyuandit(pipeline) and len(controlnets) > 0:
from diffusers import HunyuanDiTControlNetPipeline
self.pipeline = HunyuanDiTControlNetPipeline(
vae=pipeline.vae,
text_encoder=pipeline.text_encoder,
tokenizer=pipeline.tokenizer,
text_encoder_2=pipeline.text_encoder_2,
tokenizer_2=pipeline.tokenizer_2,
transformer=pipeline.transformer,
scheduler=pipeline.scheduler,
safety_checker=None,
feature_extractor=None,
controlnet=controlnets[0] if isinstance(controlnets, list) else controlnets, # can be a list
)
elif detect.is_zimage(pipeline) and len(controlnets) > 0:
from diffusers import ZImageControlNetPipeline
self.pipeline = ZImageControlNetPipeline(
vae=pipeline.vae,
text_encoder=pipeline.text_encoder,
tokenizer=pipeline.tokenizer,
transformer=pipeline.transformer,
scheduler=pipeline.scheduler,
controlnet=controlnets[0] if isinstance(controlnets, list) else controlnets, # can be a list
)
self.pipeline.task_args = { 'guidance_scale': 1 }
elif len(loras) > 0:
self.pipeline = pipeline
for lora in loras:
log.debug(f'Control {what} pipeline: lora="{lora}"')
lora = lora.replace('/huggingface.co/', '')
self.pipeline.load_lora_weights(lora)
"""
if p is not None:
p.prompt += f'<lora:{lora}:1.0>'
"""
else:
log.error(f'Control {what} pipeline: class={pipeline.__class__.__name__} unsupported model type')
return
if self.pipeline is None:
log.error(f'Control {what} pipeline: not initialized')
return
if dtype is not None:
self.pipeline = self.pipeline.to(dtype)
controlnet = None # free up memory
controlnets = None
sd_models.copy_diffuser_options(self.pipeline, pipeline)
if opts.diffusers_offload_mode == 'none':
sd_models.move_model(self.pipeline, devices.device)
sd_models.clear_caches()
sd_models.set_diffuser_offload(self.pipeline, 'model', force=True)
t1 = time.time()
debug_log(f'Control {what} pipeline: class={self.pipeline.__class__.__name__} time={t1-t0:.2f}')
def restore(self):
if self.pipeline is not None and hasattr(self.pipeline, 'unload_lora_weights'):
self.pipeline.unload_lora_weights()
self.pipeline = None
return self.orig_pipeline