mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
87 lines
3.6 KiB
Python
87 lines
3.6 KiB
Python
import os
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
from einops import rearrange
|
|
from huggingface_hub import hf_hub_download
|
|
from PIL import Image
|
|
from modules.control.util import HWC3, resize_image
|
|
from modules import devices
|
|
from modules.shared import opts
|
|
from .api import MiDaSInference
|
|
|
|
|
|
class MidasDetector:
|
|
def __init__(self, model):
|
|
self.model = model
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_or_path, model_type="dpt_hybrid", filename=None, cache_dir=None, local_files_only=False):
|
|
if pretrained_model_or_path == "lllyasviel/ControlNet":
|
|
filename = filename or "annotator/ckpts/dpt_hybrid-midas-501f0c75.pt"
|
|
else:
|
|
filename = filename or "dpt_hybrid-midas-501f0c75.pt"
|
|
if os.path.isdir(pretrained_model_or_path):
|
|
model_path = os.path.join(pretrained_model_or_path, filename)
|
|
else:
|
|
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only)
|
|
model = MiDaSInference(model_type=model_type, model_path=model_path)
|
|
return cls(model)
|
|
|
|
|
|
def to(self, device):
|
|
self.model.to(device)
|
|
return self
|
|
|
|
def __call__(self, input_image, a=np.pi * 2.0, bg_th=0.1, depth_and_normal=False, detect_resolution=512, image_resolution=512, output_type=None):
|
|
self.model.to(devices.device)
|
|
device = next(iter(self.model.parameters())).device
|
|
if not isinstance(input_image, np.ndarray):
|
|
input_image = np.array(input_image, dtype=np.uint8)
|
|
output_type = output_type or "pil"
|
|
else:
|
|
output_type = output_type or "np"
|
|
input_image = HWC3(input_image)
|
|
input_image = resize_image(input_image, detect_resolution)
|
|
assert input_image.ndim == 3
|
|
image_depth = input_image
|
|
image_depth = torch.from_numpy(image_depth).float()
|
|
image_depth = image_depth.to(device)
|
|
image_depth = image_depth / 127.5 - 1.0
|
|
image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
|
|
depth = self.model(image_depth)[0]
|
|
depth_pt = depth.clone()
|
|
depth_pt -= torch.min(depth_pt)
|
|
depth_pt /= torch.max(depth_pt)
|
|
depth_pt = depth_pt.cpu().numpy()
|
|
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
|
|
if depth_and_normal:
|
|
depth_np = depth.cpu().numpy()
|
|
x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3)
|
|
y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3)
|
|
z = np.ones_like(x) * a
|
|
x[depth_pt < bg_th] = 0
|
|
y[depth_pt < bg_th] = 0
|
|
normal = np.stack([x, y, z], axis=2)
|
|
normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
|
|
normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)[:, :, ::-1]
|
|
depth_image = HWC3(depth_image)
|
|
if depth_and_normal:
|
|
normal_image = HWC3(normal_image)
|
|
img = resize_image(input_image, image_resolution)
|
|
H, W, _C = img.shape
|
|
depth_image = cv2.resize(depth_image, (W, H), interpolation=cv2.INTER_LINEAR)
|
|
if depth_and_normal:
|
|
normal_image = cv2.resize(normal_image, (W, H), interpolation=cv2.INTER_LINEAR)
|
|
if output_type == "pil":
|
|
depth_image = Image.fromarray(depth_image)
|
|
if depth_and_normal:
|
|
normal_image = Image.fromarray(normal_image)
|
|
if opts.control_move_processor:
|
|
self.model.to('cpu')
|
|
if depth_and_normal:
|
|
return depth_image, normal_image
|
|
else:
|
|
return depth_image
|