mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
151 lines
5.5 KiB
Python
151 lines
5.5 KiB
Python
import os
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
from einops import rearrange
|
|
from huggingface_hub import hf_hub_download
|
|
from PIL import Image
|
|
from modules import devices
|
|
from modules.shared import opts
|
|
from modules.control.util import HWC3, resize_image
|
|
norm_layer = nn.InstanceNorm2d
|
|
|
|
|
|
class ResidualBlock(nn.Module):
|
|
def __init__(self, in_features):
|
|
super(ResidualBlock, self).__init__()
|
|
|
|
conv_block = [ nn.ReflectionPad2d(1),
|
|
nn.Conv2d(in_features, in_features, 3),
|
|
norm_layer(in_features),
|
|
nn.ReLU(inplace=True),
|
|
nn.ReflectionPad2d(1),
|
|
nn.Conv2d(in_features, in_features, 3),
|
|
norm_layer(in_features)
|
|
]
|
|
|
|
self.conv_block = nn.Sequential(*conv_block)
|
|
|
|
def forward(self, x):
|
|
return x + self.conv_block(x)
|
|
|
|
|
|
class Generator(nn.Module):
|
|
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
|
|
super(Generator, self).__init__()
|
|
|
|
# Initial convolution block
|
|
model0 = [ nn.ReflectionPad2d(3),
|
|
nn.Conv2d(input_nc, 64, 7),
|
|
norm_layer(64),
|
|
nn.ReLU(inplace=True) ]
|
|
self.model0 = nn.Sequential(*model0)
|
|
|
|
# Downsampling
|
|
model1 = []
|
|
in_features = 64
|
|
out_features = in_features*2
|
|
for _ in range(2):
|
|
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
|
|
norm_layer(out_features),
|
|
nn.ReLU(inplace=True) ]
|
|
in_features = out_features
|
|
out_features = in_features*2
|
|
self.model1 = nn.Sequential(*model1)
|
|
|
|
model2 = []
|
|
# Residual blocks
|
|
for _ in range(n_residual_blocks):
|
|
model2 += [ResidualBlock(in_features)]
|
|
self.model2 = nn.Sequential(*model2)
|
|
|
|
# Upsampling
|
|
model3 = []
|
|
out_features = in_features//2
|
|
for _ in range(2):
|
|
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
|
|
norm_layer(out_features),
|
|
nn.ReLU(inplace=True) ]
|
|
in_features = out_features
|
|
out_features = in_features//2
|
|
self.model3 = nn.Sequential(*model3)
|
|
|
|
# Output layer
|
|
model4 = [ nn.ReflectionPad2d(3),
|
|
nn.Conv2d(64, output_nc, 7)]
|
|
if sigmoid:
|
|
model4 += [nn.Sigmoid()]
|
|
|
|
self.model4 = nn.Sequential(*model4)
|
|
|
|
def forward(self, x, cond=None): # pylint: disable=unused-argument
|
|
out = self.model0(x)
|
|
out = self.model1(out)
|
|
out = self.model2(out)
|
|
out = self.model3(out)
|
|
out = self.model4(out)
|
|
|
|
return out
|
|
|
|
|
|
class LineartDetector:
|
|
def __init__(self, model, coarse_model):
|
|
self.model = model
|
|
self.model_coarse = coarse_model
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_or_path, filename=None, coarse_filename=None, cache_dir=None, local_files_only=False):
|
|
filename = filename or "sk_model.pth"
|
|
coarse_filename = coarse_filename or "sk_model2.pth"
|
|
|
|
if os.path.isdir(pretrained_model_or_path):
|
|
model_path = os.path.join(pretrained_model_or_path, filename)
|
|
coarse_model_path = os.path.join(pretrained_model_or_path, coarse_filename)
|
|
else:
|
|
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only)
|
|
coarse_model_path = hf_hub_download(pretrained_model_or_path, coarse_filename, cache_dir=cache_dir, local_files_only=local_files_only)
|
|
|
|
model = Generator(3, 1, 3)
|
|
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
|
model.eval()
|
|
|
|
coarse_model = Generator(3, 1, 3)
|
|
coarse_model.load_state_dict(torch.load(coarse_model_path, map_location=torch.device('cpu')))
|
|
coarse_model.eval()
|
|
|
|
return cls(model, coarse_model)
|
|
|
|
def to(self, device):
|
|
self.model.to(device)
|
|
self.model_coarse.to(device)
|
|
return self
|
|
|
|
def __call__(self, input_image, coarse=False, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs):
|
|
self.model.to(devices.device)
|
|
device = next(iter(self.model.parameters())).device
|
|
if not isinstance(input_image, np.ndarray):
|
|
input_image = np.array(input_image, dtype=np.uint8)
|
|
input_image = HWC3(input_image)
|
|
input_image = resize_image(input_image, detect_resolution)
|
|
model = self.model_coarse if coarse else self.model
|
|
assert input_image.ndim == 3
|
|
image = input_image
|
|
image = torch.from_numpy(image).float().to(device)
|
|
image = image / 255.0
|
|
image = rearrange(image, 'h w c -> 1 c h w')
|
|
line = model(image)[0][0]
|
|
line = line.cpu().numpy()
|
|
line = (line * 255.0).clip(0, 255).astype(np.uint8)
|
|
detected_map = line
|
|
detected_map = HWC3(detected_map)
|
|
img = resize_image(input_image, image_resolution)
|
|
H, W, _C = img.shape
|
|
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
|
detected_map = 255 - detected_map
|
|
if opts.control_move_processor:
|
|
self.model.to('cpu')
|
|
if output_type == "pil":
|
|
detected_map = Image.fromarray(detected_map)
|
|
return detected_map
|