mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
112 lines
5.3 KiB
Python
112 lines
5.3 KiB
Python
# This is an improved version and model of HED edge detection with Apache License, Version 2.0.
|
|
# Please use this implementation in your products
|
|
# This implementation may produce slightly different results from Saining Xie's official implementations,
|
|
# but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations.
|
|
# Different from official models and other implementations, this is an RGB-input model (rather than BGR)
|
|
# and in this way it works better for gradio's RGB protocol
|
|
|
|
import os
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
from einops import rearrange
|
|
from huggingface_hub import hf_hub_download
|
|
from PIL import Image
|
|
from modules import devices
|
|
from modules.shared import opts
|
|
from modules.control.util import HWC3, nms, resize_image, safe_step
|
|
|
|
|
|
class DoubleConvBlock(torch.nn.Module): # pylint: disable=abstract-method
|
|
def __init__(self, input_channel, output_channel, layer_number):
|
|
super().__init__()
|
|
self.convs = torch.nn.Sequential()
|
|
self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
|
|
for _i in range(1, layer_number):
|
|
self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
|
|
self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0)
|
|
|
|
def __call__(self, x, down_sampling=False):
|
|
h = x
|
|
if down_sampling:
|
|
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2))
|
|
for conv in self.convs:
|
|
h = conv(h)
|
|
h = torch.nn.functional.relu(h)
|
|
return h, self.projection(h)
|
|
|
|
|
|
class ControlNetHED_Apache2(torch.nn.Module): # pylint: disable=abstract-method
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1)))
|
|
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2)
|
|
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2)
|
|
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3)
|
|
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3)
|
|
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3)
|
|
|
|
def __call__(self, x):
|
|
h = x - self.norm
|
|
h, projection1 = self.block1(h)
|
|
h, projection2 = self.block2(h, down_sampling=True)
|
|
h, projection3 = self.block3(h, down_sampling=True)
|
|
h, projection4 = self.block4(h, down_sampling=True)
|
|
h, projection5 = self.block5(h, down_sampling=True)
|
|
return projection1, projection2, projection3, projection4, projection5
|
|
|
|
class HEDdetector:
|
|
def __init__(self, model):
|
|
self.model = model
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_or_path, filename=None, cache_dir=None, local_files_only=False):
|
|
filename = filename or "ControlNetHED.pth"
|
|
if os.path.isdir(pretrained_model_or_path):
|
|
model_path = os.path.join(pretrained_model_or_path, filename)
|
|
else:
|
|
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only)
|
|
model = ControlNetHED_Apache2()
|
|
model.load_state_dict(torch.load(model_path, map_location='cpu'))
|
|
model.float().eval()
|
|
return cls(model)
|
|
|
|
def to(self, device):
|
|
self.model.to(device)
|
|
return self
|
|
|
|
def __call__(self, input_image, detect_resolution=512, image_resolution=512, safe=False, output_type="pil", scribble=False, **kwargs):
|
|
self.model.to(devices.device)
|
|
device = next(iter(self.model.parameters())).device
|
|
if not isinstance(input_image, np.ndarray):
|
|
input_image = np.array(input_image, dtype=np.uint8)
|
|
input_image = HWC3(input_image)
|
|
input_image = resize_image(input_image, detect_resolution)
|
|
assert input_image.ndim == 3
|
|
H, W, _C = input_image.shape
|
|
image_hed = torch.from_numpy(input_image.copy()).float().to(device)
|
|
image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
|
|
edges = self.model(image_hed)
|
|
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
|
|
edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges]
|
|
edges = np.stack(edges, axis=2)
|
|
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
|
|
if safe:
|
|
edge = safe_step(edge)
|
|
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
|
|
detected_map = edge
|
|
detected_map = HWC3(detected_map)
|
|
img = resize_image(input_image, image_resolution)
|
|
H, W, _C = img.shape
|
|
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
|
if scribble:
|
|
detected_map = nms(detected_map, 127, 3.0)
|
|
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
|
|
detected_map[detected_map > 4] = 255
|
|
detected_map[detected_map < 255] = 0
|
|
if opts.control_move_processor:
|
|
self.model.to('cpu')
|
|
if output_type == "pil":
|
|
detected_map = Image.fromarray(detected_map)
|
|
return detected_map
|