1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/modules/control/proc/dwpose/__init__.py
2025-10-23 09:40:53 -04:00

152 lines
5.7 KiB
Python

# Openpose
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
# 3rd Edited by ControlNet
# 4th Edited by ControlNet (added face and correct hands)
from typing import Type, Optional, Union, List
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import cv2
import numpy as np
from PIL import Image
from installer import installed, pip, log
from modules.control.util import HWC3, resize_image
from .draw import draw_bodypose, draw_handpose, draw_facepose
checked_ok = False
busy = False
def _register_module(self, module: Type, module_name: Optional[Union[str, List[str]]] = None, force: bool = False) -> None:
if not callable(module):
raise TypeError(f'module must be Callable, but got {type(module)}')
if module_name is None:
module_name = module.__name__
if isinstance(module_name, str):
module_name = [module_name]
for name in module_name:
if not force and name in self._module_dict: # pylint: disable=protected-access
pass # patch for 'Adafactor is already registered in optimizer at torch.optim'
self._module_dict[name] = module # pylint: disable=protected-access
def check_dependencies():
global checked_ok, busy # pylint: disable=global-statement
busy = True
debug = log.trace if os.environ.get('SD_DWPOSE_DEBUG', None) is not None else lambda *args, **kwargs: None
# pip install --upgrade --no-deps --force-reinstall termcolor xtcocotools terminaltables pycocotools munkres shapely openmim==0.3.9 mmengine==0.10.5 mmcv==2.1.0 mmpose==1.3.2 mmdet==3.3.0
packages = [
'termcolor',
'xtcocotools',
'terminaltables',
'pycocotools',
'munkres',
'shapely',
'openmim==0.3.9',
'mmengine==0.10.5',
'mmcv==2.1.0',
'mmpose==1.3.2',
'mmdet==3.3.0',
]
status = [installed(p, reload=False, quiet=True) for p in packages]
debug(f'DWPose required={packages} status={status}')
if not all(status):
log.info(f'Installing dependencies: for=dwpose packages={packages}')
cmd = 'install --upgrade --no-deps --force-reinstall '
pkgs = ' '.join(packages)
pip(cmd + pkgs, ignore=False, quiet=True, uv=False)
try:
import pkg_resources
import imp # pylint: disable=deprecated-module
imp.reload(pkg_resources)
import mmcv # pylint: disable=unused-import
import mmengine # pylint: disable=unused-import
from mmengine.registry import Registry
Registry._register_module = _register_module # pylint: disable=protected-access
import mmpose # pylint: disable=unused-import
import mmdet # pylint: disable=unused-import
debug('DWPose import ok')
checked_ok = True
except Exception as e:
log.error(f'DWPose: {e}')
# from modules import errors
# errors.display(e, 'DWPose')
busy = False
return checked_ok
def draw_pose(pose, H, W):
bodies = pose['bodies']
faces = pose['faces']
hands = pose['hands']
candidate = bodies['candidate']
subset = bodies['subset']
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
canvas = draw_bodypose(canvas, candidate, subset)
canvas = draw_handpose(canvas, hands)
canvas = draw_facepose(canvas, faces)
return canvas
class DWposeDetector:
def __init__(self, det_config=None, det_ckpt=None, pose_config=None, pose_ckpt=None, device="cpu"):
self.pose_estimation = None
if not checked_ok:
if not check_dependencies():
return
Wholebody = None
try:
from .wholebody import Wholebody
except Exception as e:
log.error(f'DWPose: {e}')
if Wholebody is not None:
self.pose_estimation = Wholebody(det_config, det_ckpt, pose_config, pose_ckpt, device)
def to(self, device):
self.pose_estimation.to(device)
return self
def __call__(self, input_image, detect_resolution=512, image_resolution=512, output_type="pil", min_confidence=0.3, **kwargs):
if self.pose_estimation is None:
log.error("DWPose: not loaded")
return None
input_image = cv2.cvtColor(np.array(input_image, dtype=np.uint8), cv2.COLOR_RGB2BGR)
input_image = HWC3(input_image)
input_image = resize_image(input_image, detect_resolution)
H, W, _C = input_image.shape
candidate, subset = self.pose_estimation(input_image)
if candidate is None:
return Image.fromarray(input_image)
nums, _keys, locs = candidate.shape
candidate[..., 0] /= float(W)
candidate[..., 1] /= float(H)
body = candidate[:,:18].copy()
body = body.reshape(nums*18, locs)
score = subset[:,:18]
for i in range(len(score)):
for j in range(len(score[i])):
if score[i][j] > min_confidence:
score[i][j] = int(18*i+j)
else:
score[i][j] = -1
un_visible = subset < min_confidence
candidate[un_visible] = -1
_foot = candidate[:,18:24]
faces = candidate[:,24:92]
hands = candidate[:,92:113]
hands = np.vstack([hands, candidate[:,113:]])
bodies = dict(candidate=body, subset=score)
pose = dict(bodies=bodies, hands=hands, faces=faces)
detected_map = draw_pose(pose, H, W)
detected_map = HWC3(detected_map)
img = resize_image(input_image, image_resolution)
H, W, _C = img.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
if output_type == "pil":
detected_map = Image.fromarray(detected_map)
return detected_map