mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-29 05:02:09 +03:00
518 lines
20 KiB
Python
518 lines
20 KiB
Python
import json
|
|
import logging
|
|
import os
|
|
import pathlib
|
|
import re
|
|
from copy import deepcopy
|
|
from pathlib import Path
|
|
from typing import Optional, Tuple, Union, Dict, Any
|
|
import torch
|
|
|
|
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
|
from .model import CLIP, CustomCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\
|
|
get_cast_dtype
|
|
from .openai import load_openai_model
|
|
from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model
|
|
from .transform import image_transform
|
|
from .tokenizer import HFTokenizer, tokenize
|
|
from .utils import resize_clip_pos_embed, resize_evaclip_pos_embed, resize_visual_pos_embed, resize_eva_pos_embed
|
|
|
|
|
|
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
|
|
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
|
|
|
|
|
|
def _natural_key(string_):
|
|
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
|
|
|
|
|
|
def _rescan_model_configs():
|
|
global _MODEL_CONFIGS
|
|
|
|
config_ext = ('.json',)
|
|
config_files = []
|
|
for config_path in _MODEL_CONFIG_PATHS:
|
|
if config_path.is_file() and config_path.suffix in config_ext:
|
|
config_files.append(config_path)
|
|
elif config_path.is_dir():
|
|
for ext in config_ext:
|
|
config_files.extend(config_path.glob(f'*{ext}'))
|
|
|
|
for cf in config_files:
|
|
with open(cf, "r", encoding="utf8") as f:
|
|
model_cfg = json.load(f)
|
|
if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')):
|
|
_MODEL_CONFIGS[cf.stem] = model_cfg
|
|
|
|
_MODEL_CONFIGS = dict(sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0])))
|
|
|
|
|
|
_rescan_model_configs() # initial populate of model config registry
|
|
|
|
|
|
def list_models():
|
|
""" enumerate available model architectures based on config files """
|
|
return list(_MODEL_CONFIGS.keys())
|
|
|
|
|
|
def add_model_config(path):
|
|
""" add model config path or file and update registry """
|
|
if not isinstance(path, Path):
|
|
path = Path(path)
|
|
_MODEL_CONFIG_PATHS.append(path)
|
|
_rescan_model_configs()
|
|
|
|
|
|
def get_model_config(model_name):
|
|
if model_name in _MODEL_CONFIGS:
|
|
return deepcopy(_MODEL_CONFIGS[model_name])
|
|
else:
|
|
return None
|
|
|
|
|
|
def get_tokenizer(model_name):
|
|
config = get_model_config(model_name)
|
|
tokenizer = HFTokenizer(config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else tokenize
|
|
return tokenizer
|
|
|
|
|
|
# loading openai CLIP weights when is_openai=True for training
|
|
def load_state_dict(checkpoint_path: str, map_location: str='cpu', model_key: str='model|module|state_dict', is_openai: bool=False, skip_list: list=[]):
|
|
if is_openai:
|
|
model = torch.jit.load(checkpoint_path, map_location="cpu").eval()
|
|
state_dict = model.state_dict()
|
|
for key in ["input_resolution", "context_length", "vocab_size"]:
|
|
state_dict.pop(key, None)
|
|
else:
|
|
checkpoint = torch.load(checkpoint_path, map_location=map_location)
|
|
for mk in model_key.split('|'):
|
|
if isinstance(checkpoint, dict) and mk in checkpoint:
|
|
state_dict = checkpoint[mk]
|
|
break
|
|
else:
|
|
state_dict = checkpoint
|
|
if next(iter(state_dict.items()))[0].startswith('module'):
|
|
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
|
|
|
for k in skip_list:
|
|
if k in list(state_dict.keys()):
|
|
logging.info(f"Removing key {k} from pretrained checkpoint")
|
|
del state_dict[k]
|
|
|
|
if os.getenv('RoPE') == '1':
|
|
for k in list(state_dict.keys()):
|
|
if 'freqs_cos' in k or 'freqs_sin' in k:
|
|
del state_dict[k]
|
|
return state_dict
|
|
|
|
|
|
|
|
def load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=True):
|
|
state_dict = load_state_dict(checkpoint_path, model_key=model_key, is_openai=False)
|
|
# detect old format and make compatible with new format
|
|
if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'):
|
|
state_dict = convert_to_custom_text_state_dict(state_dict)
|
|
if 'text.logit_scale' in state_dict and hasattr(model, 'logit_scale'):
|
|
state_dict['logit_scale'] = state_dict['text.logit_scale']
|
|
del state_dict['text.logit_scale']
|
|
|
|
# resize_clip_pos_embed for CLIP and open CLIP
|
|
if 'visual.positional_embedding' in state_dict:
|
|
resize_clip_pos_embed(state_dict, model)
|
|
# specified to eva_vit_model
|
|
elif 'visual.pos_embed' in state_dict:
|
|
resize_evaclip_pos_embed(state_dict, model)
|
|
|
|
# resize_clip_pos_embed(state_dict, model)
|
|
incompatible_keys = model.load_state_dict(state_dict, strict=strict)
|
|
logging.info(f"incompatible_keys.missing_keys: {incompatible_keys.missing_keys}")
|
|
return incompatible_keys
|
|
|
|
def load_clip_visual_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]):
|
|
state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list)
|
|
|
|
for k in list(state_dict.keys()):
|
|
if not k.startswith('visual.'):
|
|
del state_dict[k]
|
|
for k in list(state_dict.keys()):
|
|
if k.startswith('visual.'):
|
|
new_k = k[7:]
|
|
state_dict[new_k] = state_dict[k]
|
|
del state_dict[k]
|
|
return state_dict
|
|
|
|
def load_clip_text_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]):
|
|
state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list)
|
|
|
|
for k in list(state_dict.keys()):
|
|
if k.startswith('visual.'):
|
|
del state_dict[k]
|
|
return state_dict
|
|
|
|
def get_pretrained_tag(pretrained_model):
|
|
pretrained_model = pretrained_model.lower()
|
|
if "laion" in pretrained_model or "open_clip" in pretrained_model:
|
|
return "open_clip"
|
|
elif "openai" in pretrained_model:
|
|
return "clip"
|
|
elif "eva" in pretrained_model and "clip" in pretrained_model:
|
|
return "eva_clip"
|
|
else:
|
|
return "other"
|
|
|
|
def load_pretrained_checkpoint(
|
|
model,
|
|
visual_checkpoint_path,
|
|
text_checkpoint_path,
|
|
strict=True,
|
|
visual_model=None,
|
|
text_model=None,
|
|
model_key="model|module|state_dict",
|
|
skip_list=[]):
|
|
visual_tag = get_pretrained_tag(visual_model)
|
|
text_tag = get_pretrained_tag(text_model)
|
|
|
|
logging.info(f"num of model state_dict keys: {len(model.state_dict().keys())}")
|
|
visual_incompatible_keys, text_incompatible_keys = None, None
|
|
if visual_checkpoint_path:
|
|
if visual_tag == "eva_clip" or visual_tag == "open_clip":
|
|
visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=False, skip_list=skip_list)
|
|
elif visual_tag == "clip":
|
|
visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=True, skip_list=skip_list)
|
|
else:
|
|
visual_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list)
|
|
|
|
# resize_clip_pos_embed for CLIP and open CLIP
|
|
if 'positional_embedding' in visual_state_dict:
|
|
resize_visual_pos_embed(visual_state_dict, model)
|
|
# specified to EVA model
|
|
elif 'pos_embed' in visual_state_dict:
|
|
resize_eva_pos_embed(visual_state_dict, model)
|
|
|
|
visual_incompatible_keys = model.visual.load_state_dict(visual_state_dict, strict=strict)
|
|
logging.info(f"num of loaded visual_state_dict keys: {len(visual_state_dict.keys())}")
|
|
logging.info(f"visual_incompatible_keys.missing_keys: {visual_incompatible_keys.missing_keys}")
|
|
|
|
if text_checkpoint_path:
|
|
if text_tag == "eva_clip" or text_tag == "open_clip":
|
|
text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=False, skip_list=skip_list)
|
|
elif text_tag == "clip":
|
|
text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=True, skip_list=skip_list)
|
|
else:
|
|
text_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list)
|
|
|
|
text_incompatible_keys = model.text.load_state_dict(text_state_dict, strict=strict)
|
|
|
|
logging.info(f"num of loaded text_state_dict keys: {len(text_state_dict.keys())}")
|
|
logging.info(f"text_incompatible_keys.missing_keys: {text_incompatible_keys.missing_keys}")
|
|
|
|
return visual_incompatible_keys, text_incompatible_keys
|
|
|
|
def create_model(
|
|
model_name: str,
|
|
pretrained: Optional[str] = None,
|
|
precision: str = 'fp32',
|
|
device: Union[str, torch.device] = 'cpu',
|
|
jit: bool = False,
|
|
force_quick_gelu: bool = False,
|
|
force_custom_clip: bool = False,
|
|
force_patch_dropout: Optional[float] = None,
|
|
pretrained_image: str = '',
|
|
pretrained_text: str = '',
|
|
pretrained_hf: bool = True,
|
|
pretrained_visual_model: str = None,
|
|
pretrained_text_model: str = None,
|
|
cache_dir: Optional[str] = None,
|
|
skip_list: list = [],
|
|
):
|
|
model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names
|
|
if isinstance(device, str):
|
|
device = torch.device(device)
|
|
|
|
if pretrained and pretrained.lower() == 'openai':
|
|
logging.info(f'Loading pretrained {model_name} from OpenAI.')
|
|
model = load_openai_model(
|
|
model_name,
|
|
precision=precision,
|
|
device=device,
|
|
jit=jit,
|
|
cache_dir=cache_dir,
|
|
)
|
|
else:
|
|
model_cfg = get_model_config(model_name)
|
|
if model_cfg is not None:
|
|
logging.info(f'Loaded {model_name} model config.')
|
|
else:
|
|
logging.error(f'Model config for {model_name} not found; available models {list_models()}.')
|
|
raise RuntimeError(f'Model config for {model_name} not found.')
|
|
|
|
if 'rope' in model_cfg.get('vision_cfg', {}):
|
|
if model_cfg['vision_cfg']['rope']:
|
|
os.environ['RoPE'] = "1"
|
|
else:
|
|
os.environ['RoPE'] = "0"
|
|
|
|
if force_quick_gelu:
|
|
# override for use of QuickGELU on non-OpenAI transformer models
|
|
model_cfg["quick_gelu"] = True
|
|
|
|
if force_patch_dropout is not None:
|
|
# override the default patch dropout value
|
|
model_cfg['vision_cfg']["patch_dropout"] = force_patch_dropout
|
|
|
|
cast_dtype = get_cast_dtype(precision)
|
|
custom_clip = model_cfg.pop('custom_text', False) or force_custom_clip or ('hf_model_name' in model_cfg['text_cfg'])
|
|
|
|
|
|
if custom_clip:
|
|
if 'hf_model_name' in model_cfg.get('text_cfg', {}):
|
|
model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf
|
|
model = CustomCLIP(**model_cfg, cast_dtype=cast_dtype)
|
|
else:
|
|
model = CLIP(**model_cfg, cast_dtype=cast_dtype)
|
|
|
|
pretrained_cfg = {}
|
|
if pretrained:
|
|
checkpoint_path = ''
|
|
pretrained_cfg = get_pretrained_cfg(model_name, pretrained)
|
|
if pretrained_cfg:
|
|
checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir)
|
|
elif os.path.exists(pretrained):
|
|
checkpoint_path = pretrained
|
|
|
|
if checkpoint_path:
|
|
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
|
|
load_checkpoint(model,
|
|
checkpoint_path,
|
|
model_key="model|module|state_dict",
|
|
strict=False
|
|
)
|
|
else:
|
|
error_str = (
|
|
f'Pretrained weights ({pretrained}) not found for model {model_name}.'
|
|
f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.')
|
|
logging.warning(error_str)
|
|
raise RuntimeError(error_str)
|
|
else:
|
|
visual_checkpoint_path = ''
|
|
text_checkpoint_path = ''
|
|
|
|
if pretrained_image:
|
|
pretrained_visual_model = pretrained_visual_model.replace('/', '-') # for callers using old naming with / in ViT names
|
|
pretrained_image_cfg = get_pretrained_cfg(pretrained_visual_model, pretrained_image)
|
|
if 'timm_model_name' in model_cfg.get('vision_cfg', {}):
|
|
# pretrained weight loading for timm models set via vision_cfg
|
|
model_cfg['vision_cfg']['timm_model_pretrained'] = True
|
|
elif pretrained_image_cfg:
|
|
visual_checkpoint_path = download_pretrained(pretrained_image_cfg, cache_dir=cache_dir)
|
|
elif os.path.exists(pretrained_image):
|
|
visual_checkpoint_path = pretrained_image
|
|
else:
|
|
logging.warning(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.')
|
|
raise RuntimeError(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.')
|
|
|
|
if pretrained_text:
|
|
pretrained_text_model = pretrained_text_model.replace('/', '-') # for callers using old naming with / in ViT names
|
|
pretrained_text_cfg = get_pretrained_cfg(pretrained_text_model, pretrained_text)
|
|
if pretrained_image_cfg:
|
|
text_checkpoint_path = download_pretrained(pretrained_text_cfg, cache_dir=cache_dir)
|
|
elif os.path.exists(pretrained_text):
|
|
text_checkpoint_path = pretrained_text
|
|
else:
|
|
logging.warning(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.')
|
|
raise RuntimeError(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.')
|
|
|
|
if visual_checkpoint_path:
|
|
logging.info(f'Loading pretrained {model_name}.visual weights ({visual_checkpoint_path}).')
|
|
if text_checkpoint_path:
|
|
logging.info(f'Loading pretrained {model_name}.text weights ({text_checkpoint_path}).')
|
|
|
|
if visual_checkpoint_path or text_checkpoint_path:
|
|
load_pretrained_checkpoint(
|
|
model,
|
|
visual_checkpoint_path,
|
|
text_checkpoint_path,
|
|
strict=False,
|
|
visual_model=pretrained_visual_model,
|
|
text_model=pretrained_text_model,
|
|
model_key="model|module|state_dict",
|
|
skip_list=skip_list
|
|
)
|
|
|
|
if "fp16" in precision or "bf16" in precision:
|
|
logging.info(f'convert precision to {precision}')
|
|
model = model.to(torch.bfloat16) if 'bf16' in precision else model.to(torch.float16)
|
|
|
|
model.to(device=device)
|
|
|
|
# set image / mean metadata from pretrained_cfg if available, or use default
|
|
model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN
|
|
model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD
|
|
|
|
if jit:
|
|
model = torch.jit.script(model)
|
|
|
|
return model
|
|
|
|
|
|
def create_model_and_transforms(
|
|
model_name: str,
|
|
pretrained: Optional[str] = None,
|
|
precision: str = 'fp32',
|
|
device: Union[str, torch.device] = 'cpu',
|
|
jit: bool = False,
|
|
force_quick_gelu: bool = False,
|
|
force_custom_clip: bool = False,
|
|
force_patch_dropout: Optional[float] = None,
|
|
pretrained_image: str = '',
|
|
pretrained_text: str = '',
|
|
pretrained_hf: bool = True,
|
|
pretrained_visual_model: str = None,
|
|
pretrained_text_model: str = None,
|
|
image_mean: Optional[Tuple[float, ...]] = None,
|
|
image_std: Optional[Tuple[float, ...]] = None,
|
|
cache_dir: Optional[str] = None,
|
|
skip_list: list = [],
|
|
):
|
|
model = create_model(
|
|
model_name,
|
|
pretrained,
|
|
precision=precision,
|
|
device=device,
|
|
jit=jit,
|
|
force_quick_gelu=force_quick_gelu,
|
|
force_custom_clip=force_custom_clip,
|
|
force_patch_dropout=force_patch_dropout,
|
|
pretrained_image=pretrained_image,
|
|
pretrained_text=pretrained_text,
|
|
pretrained_hf=pretrained_hf,
|
|
pretrained_visual_model=pretrained_visual_model,
|
|
pretrained_text_model=pretrained_text_model,
|
|
cache_dir=cache_dir,
|
|
skip_list=skip_list,
|
|
)
|
|
|
|
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
|
image_std = image_std or getattr(model.visual, 'image_std', None)
|
|
preprocess_train = image_transform(
|
|
model.visual.image_size,
|
|
is_train=True,
|
|
mean=image_mean,
|
|
std=image_std
|
|
)
|
|
preprocess_val = image_transform(
|
|
model.visual.image_size,
|
|
is_train=False,
|
|
mean=image_mean,
|
|
std=image_std
|
|
)
|
|
|
|
return model, preprocess_train, preprocess_val
|
|
|
|
|
|
def create_transforms(
|
|
model_name: str,
|
|
pretrained: Optional[str] = None,
|
|
precision: str = 'fp32',
|
|
device: Union[str, torch.device] = 'cpu',
|
|
jit: bool = False,
|
|
force_quick_gelu: bool = False,
|
|
force_custom_clip: bool = False,
|
|
force_patch_dropout: Optional[float] = None,
|
|
pretrained_image: str = '',
|
|
pretrained_text: str = '',
|
|
pretrained_hf: bool = True,
|
|
pretrained_visual_model: str = None,
|
|
pretrained_text_model: str = None,
|
|
image_mean: Optional[Tuple[float, ...]] = None,
|
|
image_std: Optional[Tuple[float, ...]] = None,
|
|
cache_dir: Optional[str] = None,
|
|
skip_list: list = [],
|
|
):
|
|
model = create_model(
|
|
model_name,
|
|
pretrained,
|
|
precision=precision,
|
|
device=device,
|
|
jit=jit,
|
|
force_quick_gelu=force_quick_gelu,
|
|
force_custom_clip=force_custom_clip,
|
|
force_patch_dropout=force_patch_dropout,
|
|
pretrained_image=pretrained_image,
|
|
pretrained_text=pretrained_text,
|
|
pretrained_hf=pretrained_hf,
|
|
pretrained_visual_model=pretrained_visual_model,
|
|
pretrained_text_model=pretrained_text_model,
|
|
cache_dir=cache_dir,
|
|
skip_list=skip_list,
|
|
)
|
|
|
|
|
|
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
|
image_std = image_std or getattr(model.visual, 'image_std', None)
|
|
preprocess_train = image_transform(
|
|
model.visual.image_size,
|
|
is_train=True,
|
|
mean=image_mean,
|
|
std=image_std
|
|
)
|
|
preprocess_val = image_transform(
|
|
model.visual.image_size,
|
|
is_train=False,
|
|
mean=image_mean,
|
|
std=image_std
|
|
)
|
|
del model
|
|
|
|
return preprocess_train, preprocess_val
|
|
|
|
def create_model_from_pretrained(
|
|
model_name: str,
|
|
pretrained: str,
|
|
precision: str = 'fp32',
|
|
device: Union[str, torch.device] = 'cpu',
|
|
jit: bool = False,
|
|
force_quick_gelu: bool = False,
|
|
force_custom_clip: bool = False,
|
|
force_patch_dropout: Optional[float] = None,
|
|
return_transform: bool = True,
|
|
image_mean: Optional[Tuple[float, ...]] = None,
|
|
image_std: Optional[Tuple[float, ...]] = None,
|
|
cache_dir: Optional[str] = None,
|
|
is_frozen: bool = False,
|
|
):
|
|
if not is_pretrained_cfg(model_name, pretrained) and not os.path.exists(pretrained):
|
|
raise RuntimeError(
|
|
f'{pretrained} is not a valid pretrained cfg or checkpoint for {model_name}.'
|
|
f' Use open_clip.list_pretrained() to find one.')
|
|
|
|
model = create_model(
|
|
model_name,
|
|
pretrained,
|
|
precision=precision,
|
|
device=device,
|
|
jit=jit,
|
|
force_quick_gelu=force_quick_gelu,
|
|
force_custom_clip=force_custom_clip,
|
|
force_patch_dropout=force_patch_dropout,
|
|
cache_dir=cache_dir,
|
|
)
|
|
|
|
if is_frozen:
|
|
for param in model.parameters():
|
|
param.requires_grad = False
|
|
|
|
if not return_transform:
|
|
return model
|
|
|
|
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
|
image_std = image_std or getattr(model.visual, 'image_std', None)
|
|
preprocess = image_transform(
|
|
model.visual.image_size,
|
|
is_train=False,
|
|
mean=image_mean,
|
|
std=image_std
|
|
)
|
|
|
|
return model, preprocess
|