1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/scripts/lbm/inference.py
Vladimir Mandic 2b9056179d add lbm background replace with relightining
Signed-off-by: Vladimir Mandic <mandic00@live.com>
2025-07-04 15:33:16 -04:00

71 lines
2.0 KiB
Python

import logging
import PIL
import torch
from torchvision.transforms import ToPILImage, ToTensor
from .lbm import LBMModel
from modules import devices
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
ASPECT_RATIOS = {
str(512 / 2048): (512, 2048),
str(1024 / 1024): (1024, 1024),
str(2048 / 512): (2048, 512),
str(896 / 1152): (896, 1152),
str(1152 / 896): (1152, 896),
str(512 / 1920): (512, 1920),
str(640 / 1536): (640, 1536),
str(768 / 1280): (768, 1280),
str(1280 / 768): (1280, 768),
str(1536 / 640): (1536, 640),
str(1920 / 512): (1920, 512),
}
@torch.no_grad()
def evaluate(
model: LBMModel,
source_image: PIL.Image.Image,
num_sampling_steps: int = 1,
):
"""
Evaluate the model on an image coming from the source distribution and generate a new image from the target distribution.
Args:
model (LBMModel): The model to evaluate.
source_image (PIL.Image.Image): The source image to evaluate the model on.
num_sampling_steps (int): The number of sampling steps to use for the model.
Returns:
PIL.Image.Image: The generated image.
"""
ori_h_bg, ori_w_bg = source_image.size
ar_bg = ori_h_bg / ori_w_bg
closest_ar_bg = min(ASPECT_RATIOS, key=lambda x: abs(float(x) - ar_bg))
source_dimensions = ASPECT_RATIOS[closest_ar_bg]
source_image = source_image.resize(source_dimensions)
img_pasted_tensor = ToTensor()(source_image).unsqueeze(0) * 2 - 1
batch = {
"source_image": img_pasted_tensor.to(dtype=devices.dtype, device=devices.device),
}
z_source = model.vae.encode(batch[model.source_key])
output_image = model.sample(
z=z_source,
num_steps=num_sampling_steps,
conditioner_inputs=batch,
max_samples=1,
).clamp(-1, 1)
output_image = (output_image[0].float().cpu() + 1) / 2
output_image = ToPILImage()(output_image)
output_image.resize((ori_h_bg, ori_w_bg))
return output_image