1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/scripts/init_latents.py
Vladimir Mandic e8b5ea3847 major refactor: remove backend original
Signed-off-by: Vladimir Mandic <mandic00@live.com>
2025-07-05 13:16:46 -04:00

49 lines
2.8 KiB
Python

from modules import scripts_manager, processing, shared, devices
class Script(scripts_manager.Script):
standalone = False
def title(self):
return 'Init Latents'
def show(self, is_img2img):
return scripts_manager.AlwaysVisible
@staticmethod
def get_latents(p):
import torch
from diffusers.utils.torch_utils import randn_tensor
generator_device = devices.cpu if shared.opts.diffusers_generator_device == "CPU" else shared.device
generator = [torch.Generator(generator_device).manual_seed(s) for s in p.seeds]
shape = (len(generator), shared.sd_model.unet.config.in_channels, p.height // shared.sd_model.vae_scale_factor, p.width // shared.sd_model.vae_scale_factor)
latents = randn_tensor(shape, generator=generator, device=shared.sd_model._execution_device, dtype=shared.sd_model.unet.dtype) # pylint: disable=protected-access
var_generator = [torch.Generator(generator_device).manual_seed(ss) for ss in p.subseeds]
var_latents = randn_tensor(shape, generator=var_generator, device=shared.sd_model._execution_device, dtype=shared.sd_model.unet.dtype) # pylint: disable=protected-access
return latents, var_latents, generator, var_generator
@staticmethod
def set_slerp(p, latents, var_latents, generator, var_generator):
from modules.processing_helpers import slerp
p.init_latent = slerp(p.subseed_strength, latents, var_latents) if p.subseed_strength < 1 else var_latents
p.generator = generator if p.subseed_strength <= 0.5 else var_generator
def process_batch(self, p: processing.StableDiffusionProcessing, *args, **kwargs): # pylint: disable=arguments-differ
if not shared.sd_loaded or not hasattr(shared.sd_model, 'unet'):
return
from modules.processing_helpers import create_random_tensors
args = list(args)
if p.subseed_strength != 0 and getattr(shared.sd_model, '_execution_device', None) is not None:
# alt method using slerp
# latents, var_latents, generator, var_generator = self.get_latents(p)
# self.set_slerp(p, latents, var_latents, generator, var_generator)
p.init_latent = create_random_tensors(
shape=[shared.sd_model.unet.config.in_channels, p.height // shared.sd_model.vae_scale_factor, p.width // shared.sd_model.vae_scale_factor],
seeds=p.seeds,
subseeds=p.subseeds,
subseed_strength=p.subseed_strength,
p=p
)
shared.log.debug(f'Latent: seed={p.seeds} subseed={p.subseeds} strength={p.subseed_strength} tensor={list(p.init_latent.shape)}')
p.init_latent = p.init_latent.to(device=shared.sd_model._execution_device, dtype=shared.sd_model.unet.dtype) # pylint: disable=protected-access