mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
82 lines
3.2 KiB
Python
82 lines
3.2 KiB
Python
import diffusers
|
|
from modules import shared, devices, sd_models, model_quant, sd_hijack_te
|
|
|
|
|
|
def load_omnigen(checkpoint_info, diffusers_load_config=None): # pylint: disable=unused-argument
|
|
if diffusers_load_config is None:
|
|
diffusers_load_config = {}
|
|
repo_id = sd_models.path_to_repo(checkpoint_info)
|
|
sd_models.hf_auth_check(checkpoint_info)
|
|
|
|
load_config, quant_config = model_quant.get_dit_args(diffusers_load_config, module='Model')
|
|
shared.log.debug(f'Load model: type=OmniGen repo="{repo_id}" config={diffusers_load_config} offload={shared.opts.diffusers_offload_mode} dtype={devices.dtype} args={diffusers_load_config}')
|
|
transformer = diffusers.OmniGenTransformer2DModel.from_pretrained(
|
|
repo_id,
|
|
subfolder="transformer",
|
|
cache_dir=shared.opts.diffusers_dir,
|
|
**load_config,
|
|
**quant_config,
|
|
)
|
|
|
|
load_config, quant_config = model_quant.get_dit_args(diffusers_load_config, allow_quant=False)
|
|
pipe = diffusers.OmniGenPipeline.from_pretrained(
|
|
repo_id,
|
|
transformer=transformer,
|
|
cache_dir=shared.opts.diffusers_dir,
|
|
**load_config,
|
|
)
|
|
|
|
sd_hijack_te.init_hijack(pipe)
|
|
|
|
devices.torch_gc(force=True, reason='load')
|
|
return pipe
|
|
|
|
|
|
def load_omnigen2(checkpoint_info, diffusers_load_config=None): # pylint: disable=unused-argument
|
|
if diffusers_load_config is None:
|
|
diffusers_load_config = {}
|
|
repo_id = sd_models.path_to_repo(checkpoint_info)
|
|
sd_models.hf_auth_check(checkpoint_info)
|
|
|
|
from pipelines.omnigen2 import OmniGen2Pipeline, OmniGen2Transformer2DModel, Qwen2_5_VLForConditionalGeneration
|
|
diffusers.OmniGen2Pipeline = OmniGen2Pipeline # monkey-pathch
|
|
diffusers.pipelines.auto_pipeline.AUTO_TEXT2IMAGE_PIPELINES_MAPPING["omnigen2"] = diffusers.OmniGen2Pipeline
|
|
diffusers.pipelines.auto_pipeline.AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["omnigen2"] = diffusers.OmniGen2Pipeline
|
|
diffusers.pipelines.auto_pipeline.AUTO_INPAINT_PIPELINES_MAPPING["omnigen2"] = diffusers.OmniGen2Pipeline
|
|
|
|
load_config, quant_config = model_quant.get_dit_args(diffusers_load_config, module='Model')
|
|
shared.log.debug(f'Load model: type=OmniGen2 repo="{repo_id}" config={diffusers_load_config} offload={shared.opts.diffusers_offload_mode} dtype={devices.dtype} args={diffusers_load_config}')
|
|
transformer = OmniGen2Transformer2DModel.from_pretrained(
|
|
repo_id,
|
|
subfolder="transformer",
|
|
cache_dir=shared.opts.diffusers_dir,
|
|
trust_remote_code=True,
|
|
**load_config,
|
|
**quant_config,
|
|
)
|
|
|
|
load_config, quant_config = model_quant.get_dit_args(diffusers_load_config, module='TE')
|
|
mllm = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
repo_id,
|
|
subfolder="mllm",
|
|
cache_dir=shared.opts.diffusers_dir,
|
|
trust_remote_code=True,
|
|
**load_config,
|
|
**quant_config,
|
|
)
|
|
|
|
pipe = OmniGen2Pipeline.from_pretrained(
|
|
repo_id,
|
|
# transformer=transformer,
|
|
mllm=mllm,
|
|
cache_dir=shared.opts.diffusers_dir,
|
|
trust_remote_code=True,
|
|
**load_config,
|
|
)
|
|
pipe.transformer = transformer # for omnigen2 transformer must be loaded after pipeline
|
|
|
|
sd_hijack_te.init_hijack(pipe)
|
|
|
|
devices.torch_gc(force=True, reason='load')
|
|
return pipe
|