1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/pipelines/model_kandinsky.py
vladmandic acca58f50c add kandinsky5
Signed-off-by: vladmandic <mandic00@live.com>
2025-12-09 09:47:22 +01:00

111 lines
4.2 KiB
Python

import transformers
import diffusers
from modules import shared, sd_models, devices, model_quant, sd_hijack_te, sd_hijack_vae
from pipelines import generic
def load_kandinsky21(checkpoint_info, diffusers_load_config=None):
if diffusers_load_config is None:
diffusers_load_config = {}
repo_id = sd_models.path_to_repo(checkpoint_info)
sd_models.hf_auth_check(checkpoint_info)
load_args, _quant_args = model_quant.get_dit_args(diffusers_load_config)
shared.log.debug(f'Load model: type=Kandinsky21 repo="{repo_id}" config={diffusers_load_config} offload={shared.opts.diffusers_offload_mode} dtype={devices.dtype} args={load_args}')
pipe = diffusers.KandinskyCombinedPipeline.from_pretrained(
repo_id,
cache_dir=shared.opts.diffusers_dir,
**load_args,
)
sd_hijack_te.init_hijack(pipe)
devices.torch_gc(force=True, reason='load')
return pipe
def load_kandinsky22(checkpoint_info, diffusers_load_config=None):
if diffusers_load_config is None:
diffusers_load_config = {}
repo_id = sd_models.path_to_repo(checkpoint_info)
sd_models.hf_auth_check(checkpoint_info)
load_args, _quant_args = model_quant.get_dit_args(diffusers_load_config)
shared.log.debug(f'Load model: type=Kandinsky22 repo="{repo_id}" config={diffusers_load_config} offload={shared.opts.diffusers_offload_mode} dtype={devices.dtype} args={load_args}')
pipe = diffusers.KandinskyV22CombinedPipeline.from_pretrained(
repo_id,
cache_dir=shared.opts.diffusers_dir,
**load_args,
)
sd_hijack_te.init_hijack(pipe)
devices.torch_gc(force=True, reason='load')
return pipe
def load_kandinsky3(checkpoint_info, diffusers_load_config=None):
if diffusers_load_config is None:
diffusers_load_config = {}
repo_id = sd_models.path_to_repo(checkpoint_info)
sd_models.hf_auth_check(checkpoint_info)
load_args, _quant_args = model_quant.get_dit_args(diffusers_load_config)
shared.log.debug(f'Load model: type=Kandinsky30 repo="{repo_id}" config={diffusers_load_config} offload={shared.opts.diffusers_offload_mode} dtype={devices.dtype} args={load_args}')
unet = generic.load_transformer(repo_id, cls_name=diffusers.Kandinsky3UNet, load_config=diffusers_load_config, subfolder="unet", variant="fp16")
text_encoder = generic.load_text_encoder(repo_id, cls_name=transformers.T5EncoderModel, load_config=diffusers_load_config, subfolder="text_encoder", variant="fp16", allow_shared=False)
pipe = diffusers.Kandinsky3Pipeline.from_pretrained(
repo_id,
unet=unet,
text_encoder=text_encoder,
variant="fp16",
cache_dir=shared.opts.diffusers_dir,
**load_args,
)
pipe.task_args = {
'output_type': 'np',
}
del text_encoder
del unet
sd_hijack_te.init_hijack(pipe)
sd_hijack_vae.init_hijack(pipe)
devices.torch_gc(force=True, reason='load')
return pipe
def load_kandinsky5(checkpoint_info, diffusers_load_config=None):
if diffusers_load_config is None:
diffusers_load_config = {}
repo_id = sd_models.path_to_repo(checkpoint_info)
sd_models.hf_auth_check(checkpoint_info)
load_args, _quant_args = model_quant.get_dit_args(diffusers_load_config)
shared.log.debug(f'Load model: type=Kandinsky50 repo="{repo_id}" config={diffusers_load_config} offload={shared.opts.diffusers_offload_mode} dtype={devices.dtype} args={load_args}')
transformer = generic.load_transformer(repo_id, cls_name=diffusers.Kandinsky5Transformer3DModel, load_config=diffusers_load_config)
text_encoder = generic.load_text_encoder(repo_id, cls_name=transformers.Qwen2_5_VLForConditionalGeneration, load_config=diffusers_load_config)
if 'I2I' in repo_id:
cls = diffusers.Kandinsky5I2IPipeline
else:
cls = diffusers.Kandinsky5T2IPipeline
pipe = cls.from_pretrained(
repo_id,
transformer=transformer,
text_encoder=text_encoder,
cache_dir=shared.opts.diffusers_dir,
**load_args,
)
pipe.task_args = {
'output_type': 'np',
}
del text_encoder
del transformer
sd_hijack_te.init_hijack(pipe)
sd_hijack_vae.init_hijack(pipe)
devices.torch_gc(force=True, reason='load')
return pipe