1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/pipelines/model_flux2.py
2025-11-27 17:25:36 +03:00

40 lines
1.7 KiB
Python

import transformers
import diffusers
from modules import shared, devices, sd_models, model_quant, sd_hijack_te, sd_hijack_vae
from pipelines import generic
def load_flux2(checkpoint_info, diffusers_load_config=None):
if diffusers_load_config is None:
diffusers_load_config = {}
repo_id = sd_models.path_to_repo(checkpoint_info)
sd_models.hf_auth_check(checkpoint_info)
load_args, _quant_args = model_quant.get_dit_args(diffusers_load_config, allow_quant=False)
shared.log.debug(f'Load model: type=Flux2 repo="{repo_id}" config={diffusers_load_config} offload={shared.opts.diffusers_offload_mode} dtype={devices.dtype} args={load_args}')
transformer = generic.load_transformer(repo_id, cls_name=diffusers.Flux2Transformer2DModel, load_config=diffusers_load_config)
text_encoder = generic.load_text_encoder(repo_id, cls_name=transformers.Mistral3ForConditionalGeneration, load_config=diffusers_load_config)
pipe = diffusers.Flux2Pipeline.from_pretrained(
repo_id,
transformer=transformer,
text_encoder=text_encoder,
cache_dir=shared.opts.diffusers_dir,
**load_args,
)
pipe.task_args = {
'output_type': 'np',
}
diffusers.pipelines.auto_pipeline.AUTO_TEXT2IMAGE_PIPELINES_MAPPING["flux2"] = diffusers.Flux2Pipeline
diffusers.pipelines.auto_pipeline.AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["flux2"] = diffusers.Flux2Pipeline
diffusers.pipelines.auto_pipeline.AUTO_INPAINT_PIPELINES_MAPPING["flux2"] = diffusers.Flux2Pipeline
del text_encoder
del transformer
sd_hijack_te.init_hijack(pipe)
sd_hijack_vae.init_hijack(pipe)
devices.torch_gc(force=True, reason='load')
return pipe