1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/pipelines/model_chrono.py
Vladimir Mandic 947e2c7bc5 update chrono pipeline
Signed-off-by: Vladimir Mandic <mandic00@live.com>
2025-11-10 08:43:50 -05:00

60 lines
2.3 KiB
Python

import diffusers
import transformers
from modules import shared, devices, sd_models, model_quant, sd_hijack_te, sd_hijack_vae
from pipelines import generic
def postprocess(p, result): # pylint: disable=unused-argument
shared.log.debug('Postprocess: model=ChronoEdit')
if result is not None and hasattr(result, 'images'):
result.images = result.images[-1]
return result
def load_chrono(checkpoint_info, diffusers_load_config=None):
if diffusers_load_config is None:
diffusers_load_config = {}
repo_id = sd_models.path_to_repo(checkpoint_info)
sd_models.hf_auth_check(checkpoint_info)
load_args, _quant_args = model_quant.get_dit_args(diffusers_load_config, allow_quant=False)
shared.log.debug(f'Load model: type=ChronoEdit repo="{repo_id}" config={diffusers_load_config} offload={shared.opts.diffusers_offload_mode} dtype={devices.dtype} args={load_args}')
transformer = generic.load_transformer(repo_id, cls_name=diffusers.ChronoEditTransformer3DModel, load_config=diffusers_load_config, subfolder="transformer")
text_encoder = generic.load_text_encoder(repo_id, cls_name=transformers.UMT5EncoderModel, load_config=diffusers_load_config, subfolder="text_encoder")
try:
pipe = diffusers.ChronoEditPipeline.from_pretrained(
repo_id,
transformer=transformer,
text_encoder=text_encoder,
cache_dir=shared.opts.diffusers_dir,
**load_args,
)
except Exception as e:
import os
from modules import errors
errors.display(e, 'Chrono')
os._exit(1)
pipe.postprocess = postprocess
pipe.task_args = {
'num_temporal_reasoning_steps': shared.opts.model_chrono_temporal_steps,
'output_type': 'np',
}
# reference: <https://github.com/nv-tlabs/ChronoEdit/blob/main/scripts/run_inference_diffusers.py>
if shared.opts.model_chrono_temporal_steps > 0:
pipe.task_args['num_frames'] = 29
pipe.task_args['enable_temporal_reasoning'] = True
else:
pipe.task_args['num_frames'] = 5
pipe.task_args['enable_temporal_reasoning'] = False
del text_encoder
del transformer
sd_hijack_te.init_hijack(pipe)
sd_hijack_vae.init_hijack(pipe)
devices.torch_gc()
return pipe