1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/pipelines/model_bria.py
2025-10-30 03:11:50 +03:00

43 lines
1.6 KiB
Python

import os
import sys
import transformers
import diffusers
from modules import shared, devices, sd_models, model_quant, sd_hijack_te, sd_hijack_vae
from pipelines import generic
def load_bria(checkpoint_info, diffusers_load_config=None):
if diffusers_load_config is None:
diffusers_load_config = {}
repo_id = sd_models.path_to_repo(checkpoint_info)
sd_models.hf_auth_check(checkpoint_info)
sys.path.append(os.path.join(os.path.dirname(__file__), 'bria'))
from pipelines.bria.bria_pipeline import BriaPipeline
from pipelines.bria.transformer_bria import BriaTransformer2DModel
diffusers.BriaPipeline = BriaPipeline
diffusers.BriaTransformer2DModel = BriaTransformer2DModel
load_args, _quant_args = model_quant.get_dit_args(diffusers_load_config, allow_quant=False)
shared.log.debug(f'Load model: type=Bria repo="{repo_id}" config={diffusers_load_config} offload={shared.opts.diffusers_offload_mode} dtype={devices.dtype} args={load_args}')
transformer = generic.load_transformer(repo_id, cls_name=BriaTransformer2DModel, load_config=diffusers_load_config)
text_encoder = generic.load_text_encoder(repo_id, cls_name=transformers.T5EncoderModel, load_config=diffusers_load_config)
pipe = BriaPipeline.from_pretrained(
repo_id,
transformer=transformer,
text_encoder=text_encoder,
cache_dir=shared.opts.diffusers_dir,
trust_remote_code=True,
**load_args,
)
del text_encoder
del transformer
sd_hijack_te.init_hijack(pipe)
sd_hijack_vae.init_hijack(pipe)
devices.torch_gc()
return pipe