1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/modules/video_models/google_veo.py
CalamitousFelicitousness 1aab61aa47 Cleanup
2026-01-10 03:08:22 +00:00

186 lines
6.5 KiB
Python

import io
import os
import time
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..')))
from PIL import Image
from installer import install, reload, log
image_size_buckets = {
'720p': 1280*720,
'1080p': 1920*1080,
}
aspect_ratios_buckets = {
'1:1': 1/1,
'2:3': 2/3,
'3:2': 3/2,
'4:3': 4/3,
'3:4': 3/4,
'4:5': 4/5,
'5:4': 5/4,
'16:9': 16/9,
'9:16': 9/16,
'21:9': 21/9,
'9:21': 9/21,
}
def google_requirements():
install('google-genai==1.52.0')
install('pydantic==2.11.7', ignore=True, quiet=True)
reload('pydantic', '2.11.7')
def get_size_buckets(width: int, height: int) -> str:
aspect_ratio = width / height
closest_aspect_ratio = min(aspect_ratios_buckets.items(), key=lambda x: abs(x[1] - aspect_ratio))[0]
pixel_count = width * height
closest_size = min(image_size_buckets.items(), key=lambda x: abs(x[1] - pixel_count))[0]
closest_aspect_ratio = min(aspect_ratios_buckets.items(), key=lambda x: abs(x[1] - aspect_ratio))[0]
return closest_size, closest_aspect_ratio
class GoogleVeoVideoPipeline():
def __init__(self, model_name: str):
self.model = model_name
self.client = None
self.config = None
google_requirements()
log.debug(f'Load model: type=GoogleVeo model="{model_name}"')
def txt2vid(self, prompt):
return self.client.models.generate_videos(
model=self.model,
prompt=prompt,
config=self.config,
)
def img2vid(self, prompt, image):
from google import genai
image_bytes = io.BytesIO()
image.save(image_bytes, format='JPEG')
return self.client.models.generate_videos(
model=self.model,
prompt=prompt,
config=self.config,
image=genai.types.Image(image_bytes=image_bytes.getvalue(), mime_type='image/jpeg'),
)
def get_args(self):
from modules.shared import opts
# Use UI settings only - env vars are intentionally ignored
api_key = opts.google_api_key
project_id = opts.google_project_id
location_id = opts.google_location_id
use_vertexai = opts.google_use_vertexai
has_api_key = api_key and len(api_key) > 0
has_project = project_id and len(project_id) > 0
has_location = location_id and len(location_id) > 0
if use_vertexai:
if has_api_key and (has_project or has_location):
# Invalid: can't have both api_key AND project/location
log.error(f'Cloud: model="{self.model}" API key and project/location are mutually exclusive')
return None
elif has_api_key:
# Vertex AI Express Mode: api_key + vertexai, no project/location
args = {'api_key': api_key, 'vertexai': True}
elif has_project and has_location:
# Standard Vertex AI: project/location, no api_key
args = {'vertexai': True, 'project': project_id, 'location': location_id}
else:
log.error(f'Cloud: model="{self.model}" Vertex AI requires either API key (Express Mode) or project ID + location ID')
return None
else:
# Gemini Developer API: api_key only
if not has_api_key:
log.error(f'Cloud: model="{self.model}" API key not provided')
return None
args = {'api_key': api_key}
# Debug logging
args_log = args.copy()
if args_log.get('api_key'):
args_log['api_key'] = '...' + args_log['api_key'][-4:]
log.debug(f'Cloud: model="{self.model}" args={args_log}')
return args
def __call__(self, prompt: list[str], width: int, height: int, image: Image.Image = None, num_frames: int = 4*24):
from google import genai
if isinstance(prompt, list) and len(prompt) > 0:
prompt = prompt[0]
if self.client is None:
args = self.get_args()
if args is None:
return None
self.client = genai.Client(**args)
resolution, aspect_ratio = get_size_buckets(width, height)
duration = num_frames // 24
if duration < 4:
duration = 4
if duration > 8:
duration = 8
self.config=genai.types.GenerateVideosConfig(
# seed=42,
# fps=24,
duration_seconds=duration,
aspect_ratio=aspect_ratio,
resolution=resolution,
# person_generation='ALLOW_ALL',
# safety_filter_level='BLOCK_NONE',
# negative_prompt=None,
# enhance_prompt=True,
# generate_audio=True,
)
log.debug(f'Cloud: prompt="{prompt}" size={resolution} ar={aspect_ratio} image={image} model="{self.model}" frames={num_frames} duration={duration}')
operation = None
try:
if image is not None:
operation = self.img2vid(prompt, image)
else:
operation = self.txt2vid(prompt)
while not operation.done:
log.debug(f"Cloud processing: {operation}")
time.sleep(10)
operation = self.client.operations.get(operation)
except Exception as e:
log.error(f'Cloud video: model="{self.model}" {operation} {e}')
return None
try:
response: genai.types.GeneratedVideo = operation.response.generated_videos[0]
except Exception:
log.error(f'Cloud video: model="{self.model}" no response {operation}')
return None
try:
self.client.files.download(file=response.video)
video_bytes = response.video.video_bytes
return { 'bytes': video_bytes, 'images': [] }
except Exception as e:
log.error(f'Cloud download: model="{self.model}" {e}')
return None
def load_veo(model_name): # pylint: disable=unused-argument
pipe = GoogleVeoVideoPipeline(model_name = model_name)
return pipe
if __name__ == "__main__":
from installer import setup_logging
setup_logging()
log.info('test')
model = GoogleVeoVideoPipeline('veo-3.1-generate-preview')
img = Image.open('C:\\Users\\mandi\\OneDrive\\Generative\\Samples\\cartoon.png')
vid = model(['A beautiful young woman walking through the fantasy city'], 1280, 720, image=img)
if vid is not None:
with open("veo.mp4", "wb") as f:
f.write(vid['video'])