mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
Enable live preview during FLUX.2 and FLUX.2 Klein image generation using the TAE FLUX.2 decoder from madebyollin/taesd. - Add dedicated TAE entries (FLUX.1, FLUX.2, SD3) that auto-select based on model type, making the dropdown only affect SD/SDXL models - Add FLUX.2 latent unpacking in callback to convert packed [B, seq_len, 128] format to spatial [B, 32, H, W] for preview - Support FLUX.2's 32 latent channels (vs 16 for FLUX.1/SD3)
93 lines
4.2 KiB
Python
93 lines
4.2 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
from modules import devices
|
|
|
|
|
|
def conv(n_in, n_out, **kwargs):
|
|
return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
|
|
|
|
class Clamp(nn.Module):
|
|
def forward(self, x):
|
|
return torch.tanh(x / 3) * 3
|
|
|
|
class Block(nn.Module):
|
|
def __init__(self, n_in, n_out):
|
|
super().__init__()
|
|
self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out))
|
|
self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
|
|
self.fuse = nn.ReLU()
|
|
def forward(self, x):
|
|
return self.fuse(self.conv(x) + self.skip(x))
|
|
|
|
def Encoder(latent_channels=4):
|
|
return nn.Sequential(
|
|
conv(3, 64), Block(64, 64),
|
|
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
|
|
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
|
|
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
|
|
conv(64, latent_channels),
|
|
)
|
|
|
|
def Decoder(latent_channels=4):
|
|
from modules import shared
|
|
if shared.opts.taesd_layers == 1:
|
|
return nn.Sequential(
|
|
Clamp(), conv(latent_channels, 64), nn.ReLU(),
|
|
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
|
Block(64, 64), Block(64, 64), Block(64, 64), nn.Identity(), conv(64, 64, bias=False),
|
|
Block(64, 64), Block(64, 64), Block(64, 64), nn.Identity(), conv(64, 64, bias=False),
|
|
Block(64, 64), conv(64, 3),
|
|
)
|
|
elif shared.opts.taesd_layers == 2:
|
|
return nn.Sequential(
|
|
Clamp(), conv(latent_channels, 64), nn.ReLU(),
|
|
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
|
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
|
Block(64, 64), Block(64, 64), Block(64, 64), nn.Identity(), conv(64, 64, bias=False),
|
|
Block(64, 64), conv(64, 3),
|
|
)
|
|
else:
|
|
return nn.Sequential(
|
|
Clamp(), conv(latent_channels, 64), nn.ReLU(),
|
|
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
|
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
|
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
|
Block(64, 64), conv(64, 3),
|
|
)
|
|
|
|
|
|
class TAESD(nn.Module): # pylint: disable=abstract-method
|
|
latent_magnitude = 3
|
|
latent_shift = 0.5
|
|
|
|
def __init__(self, encoder_path=None, decoder_path=None, latent_channels=None):
|
|
super().__init__()
|
|
self.dtype = devices.dtype_vae if devices.dtype_vae != torch.bfloat16 else torch.float16 # taesd does not support bf16
|
|
if latent_channels is None:
|
|
latent_channels = self.guess_latent_channels(str(decoder_path), str(encoder_path))
|
|
self.encoder = Encoder(latent_channels)
|
|
self.decoder = Decoder(latent_channels)
|
|
if encoder_path is not None:
|
|
self.encoder.load_state_dict(torch.load(encoder_path, map_location="cpu"), strict=False)
|
|
self.encoder.eval()
|
|
self.encoder = self.encoder.to(devices.device, dtype=self.dtype)
|
|
if decoder_path is not None:
|
|
self.decoder.load_state_dict(torch.load(decoder_path, map_location="cpu"), strict=False)
|
|
self.decoder.eval()
|
|
self.decoder = self.decoder.to(devices.device, dtype=self.dtype)
|
|
|
|
def guess_latent_channels(self, decoder_path, encoder_path):
|
|
if "f2" in encoder_path or "f2" in decoder_path:
|
|
return 32 # FLUX.2 uses 32 latent channels
|
|
if ("f1" in encoder_path or "f1" in decoder_path) or ("sd3" in encoder_path or "sd3" in decoder_path):
|
|
return 16
|
|
return 4
|
|
|
|
@staticmethod
|
|
def scale_latents(x):
|
|
return x.div(2 * TAESD.latent_magnitude).add(TAESD.latent_shift).clamp(0, 1) # raw latents -> [0, 1]
|
|
|
|
@staticmethod
|
|
def unscale_latents(x):
|
|
return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude) # [0, 1] -> raw latents
|