1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/modules/sdnq/packed_int.py
2025-10-05 03:12:05 +03:00

300 lines
12 KiB
Python

# pylint: disable=redefined-builtin,no-member,protected-access
from typing import Optional
import torch
from .common import dtype_dict
def pack_int_symetric(tensor: torch.CharTensor, weights_dtype: str) -> torch.ByteTensor:
return packed_int_function_dict[weights_dtype]["pack"](tensor.sub_(dtype_dict[weights_dtype]["min"]).to(dtype=dtype_dict[weights_dtype]["storage_dtype"]))
def pack_int_asymetric(tensor: torch.CharTensor, weights_dtype: str) -> torch.ByteTensor:
return packed_int_function_dict[weights_dtype]["pack"](tensor.to(dtype=dtype_dict[weights_dtype]["storage_dtype"]))
def unpack_int_symetric(packed_tensor: torch.ByteTensor, shape: torch.Size, weights_dtype: str, dtype: Optional[torch.dtype] = None) -> torch.CharTensor:
if dtype is None:
dtype = dtype_dict[weights_dtype]["torch_dtype"]
return packed_int_function_dict[weights_dtype]["unpack"](packed_tensor, shape).to(dtype=dtype).add_(dtype_dict[weights_dtype]["min"])
def unpack_int_asymetric(packed_tensor: torch.ByteTensor, shape: torch.Size, weights_dtype: str) -> torch.CharTensor:
return packed_int_function_dict[weights_dtype]["unpack"](packed_tensor, shape)
def pack_uint7(tensor: torch.ByteTensor) -> torch.ByteTensor:
packed_tensor = tensor.contiguous().view(-1, 8)
packed_tensor = torch.bitwise_or(
packed_tensor[:, :7],
torch.bitwise_and(
torch.stack(
(
torch.bitwise_left_shift(packed_tensor[:, 7], 1),
torch.bitwise_left_shift(packed_tensor[:, 7], 2),
torch.bitwise_left_shift(packed_tensor[:, 7], 3),
torch.bitwise_left_shift(packed_tensor[:, 7], 4),
torch.bitwise_left_shift(packed_tensor[:, 7], 5),
torch.bitwise_left_shift(packed_tensor[:, 7], 6),
torch.bitwise_left_shift(packed_tensor[:, 7], 7),
),
dim=-1
),
128
),
)
return packed_tensor
def pack_uint6(tensor: torch.ByteTensor) -> torch.ByteTensor:
packed_tensor = tensor.contiguous().view(-1, 4)
packed_tensor = torch.cat(
(
torch.bitwise_or(
packed_tensor[:, :2],
torch.bitwise_and(
torch.stack(
(
torch.bitwise_left_shift(packed_tensor[:, 3], 2),
torch.bitwise_left_shift(packed_tensor[:, 3], 4),
),
dim=-1
),
192
)
),
torch.bitwise_or(packed_tensor[:, 2], torch.bitwise_left_shift(packed_tensor[:, 3], 6)).unsqueeze(-1),
),
dim=-1
)
return packed_tensor
def pack_uint5(tensor: torch.ByteTensor) -> torch.ByteTensor:
packed_tensor = tensor.contiguous().view(-1, 8)
packed_tensor = torch.cat(
(
torch.bitwise_or(packed_tensor[:, :3], torch.bitwise_left_shift(packed_tensor[:, 5:8], 5)),
torch.bitwise_or(
packed_tensor[:, 3],
torch.bitwise_or(
torch.bitwise_and(torch.bitwise_left_shift(packed_tensor[:, 5], 2), 96),
torch.bitwise_and(torch.bitwise_left_shift(packed_tensor[:, 7], 3), 128),
),
).unsqueeze(-1),
torch.bitwise_or(
packed_tensor[:, 4],
torch.bitwise_or(
torch.bitwise_and(torch.bitwise_left_shift(packed_tensor[:, 6], 2), 96),
torch.bitwise_and(torch.bitwise_left_shift(packed_tensor[:, 7], 4), 128),
),
).unsqueeze(-1),
),
dim=-1
)
return packed_tensor
def pack_uint4(tensor: torch.ByteTensor) -> torch.ByteTensor:
packed_tensor = tensor.contiguous().view(-1, 2)
packed_tensor = torch.bitwise_or(packed_tensor[:, 0], torch.bitwise_left_shift(packed_tensor[:, 1], 4))
return packed_tensor
def pack_uint3(tensor: torch.ByteTensor) -> torch.ByteTensor:
packed_tensor = tensor.contiguous().view(-1, 8)
packed_tensor = torch.bitwise_or(
torch.bitwise_or(packed_tensor[:, :3], torch.bitwise_left_shift(packed_tensor[:, 3:6], 3)),
torch.cat(
(
torch.bitwise_left_shift(packed_tensor[:, 6:8], 6),
torch.bitwise_or(
torch.bitwise_and(torch.bitwise_left_shift(packed_tensor[:, 6], 4), 64),
torch.bitwise_and(torch.bitwise_left_shift(packed_tensor[:, 7], 5), 128),
).unsqueeze(-1),
),
dim=-1
)
)
return packed_tensor
def pack_uint2(tensor: torch.ByteTensor) -> torch.ByteTensor:
packed_tensor = tensor.contiguous().view(-1, 4)
packed_tensor = torch.bitwise_or(
torch.bitwise_or(packed_tensor[:, 0], torch.bitwise_left_shift(packed_tensor[:, 1], 2)),
torch.bitwise_or(torch.bitwise_left_shift(packed_tensor[:, 2], 4), torch.bitwise_left_shift(packed_tensor[:, 3], 6)),
)
return packed_tensor
def pack_uint1(tensor: torch.Tensor) -> torch.Tensor:
packed_tensor = tensor.contiguous().view(-1, 8)
packed_tensor = torch.bitwise_or(
torch.bitwise_or(
torch.bitwise_or(packed_tensor[:, 0], torch.bitwise_left_shift(packed_tensor[:, 1], 1)),
torch.bitwise_or(torch.bitwise_left_shift(packed_tensor[:, 2], 2), torch.bitwise_left_shift(packed_tensor[:, 3], 3))
),
torch.bitwise_or(
torch.bitwise_or(torch.bitwise_left_shift(packed_tensor[:, 4], 4), torch.bitwise_left_shift(packed_tensor[:, 5], 5)),
torch.bitwise_or(torch.bitwise_left_shift(packed_tensor[:, 6], 6), torch.bitwise_left_shift(packed_tensor[:, 7], 7))
),
)
return packed_tensor
def unpack_uint7(packed_tensor: torch.ByteTensor, shape: torch.Size) -> torch.ByteTensor:
result = torch.cat(
(
torch.bitwise_and(packed_tensor[:, :7], 127),
torch.bitwise_or(
torch.bitwise_or(
torch.bitwise_or(
torch.bitwise_and(torch.bitwise_right_shift(packed_tensor[:, 0], 1), 64),
torch.bitwise_and(torch.bitwise_right_shift(packed_tensor[:, 1], 2), 32),
),
torch.bitwise_or(
torch.bitwise_and(torch.bitwise_right_shift(packed_tensor[:, 2], 3), 16),
torch.bitwise_and(torch.bitwise_right_shift(packed_tensor[:, 3], 4), 8),
),
),
torch.bitwise_or(
torch.bitwise_or(
torch.bitwise_and(torch.bitwise_right_shift(packed_tensor[:, 4], 5), 4),
torch.bitwise_and(torch.bitwise_right_shift(packed_tensor[:, 5], 6), 2),
),
torch.bitwise_right_shift(packed_tensor[:, 6], 7),
),
).unsqueeze(-1)
),
dim=-1
).view(shape)
return result
def unpack_uint6(packed_tensor: torch.ByteTensor, shape: torch.Size) -> torch.ByteTensor:
result = torch.cat(
(
torch.bitwise_and(packed_tensor[:, 0:3], 63),
torch.bitwise_or(
torch.bitwise_or(
torch.bitwise_and(torch.bitwise_right_shift(packed_tensor[:, 0], 2), 48),
torch.bitwise_and(torch.bitwise_right_shift(packed_tensor[:, 1], 4), 12),
),
torch.bitwise_right_shift(packed_tensor[:, 2], 6)
).unsqueeze(-1)
),
dim=-1
).view(shape)
return result
def unpack_uint5(packed_tensor: torch.ByteTensor, shape: torch.Size) -> torch.ByteTensor:
result_bitwise_right_shift = torch.bitwise_right_shift(packed_tensor[:, :3], 5)
result = torch.cat(
(
torch.bitwise_and(packed_tensor[:, :5], 31),
torch.bitwise_or(
result_bitwise_right_shift[:, :2],
torch.bitwise_and(torch.bitwise_right_shift(packed_tensor[:, 3:5], 2), 24),
),
torch.bitwise_or(
result_bitwise_right_shift[:, 2],
torch.bitwise_or(
torch.bitwise_and(torch.bitwise_right_shift(packed_tensor[:, 3], 3), 16),
torch.bitwise_and(torch.bitwise_right_shift(packed_tensor[:, 4], 4), 8),
),
).unsqueeze(-1),
),
dim=-1
).view(shape)
return result
def unpack_uint4(packed_tensor: torch.ByteTensor, shape: torch.Size) -> torch.ByteTensor:
result = torch.stack((torch.bitwise_and(packed_tensor, 15), torch.bitwise_right_shift(packed_tensor, 4)), dim=-1).view(shape)
return result
def unpack_uint3(packed_tensor: torch.ByteTensor, shape: torch.Size) -> torch.ByteTensor:
result = torch.bitwise_and(
torch.cat(
(
packed_tensor[:, :3],
torch.bitwise_right_shift(packed_tensor[:, :3], 3),
torch.bitwise_or(
torch.bitwise_right_shift(packed_tensor[:, :2], 6),
torch.bitwise_and(
torch.stack(
(
torch.bitwise_right_shift(packed_tensor[:, 2], 4),
torch.bitwise_right_shift(packed_tensor[:, 2], 5),
),
dim=-1
),
4
),
),
),
dim=-1
),
7
).view(shape)
return result
def unpack_uint2(packed_tensor: torch.ByteTensor, shape: torch.Size) -> torch.ByteTensor:
result = torch.bitwise_and(
torch.stack(
(
packed_tensor,
torch.bitwise_right_shift(packed_tensor, 2),
torch.bitwise_right_shift(packed_tensor, 4),
torch.bitwise_right_shift(packed_tensor, 6),
),
dim=-1
),
3
).view(shape)
return result
def unpack_uint1(packed_tensor: torch.Tensor, shape: torch.Size) -> torch.Tensor:
result = torch.bitwise_and(
torch.stack(
(
packed_tensor,
torch.bitwise_right_shift(packed_tensor, 1),
torch.bitwise_right_shift(packed_tensor, 2),
torch.bitwise_right_shift(packed_tensor, 3),
torch.bitwise_right_shift(packed_tensor, 4),
torch.bitwise_right_shift(packed_tensor, 5),
torch.bitwise_right_shift(packed_tensor, 6),
torch.bitwise_right_shift(packed_tensor, 7),
),
dim=-1
),
1
).view(shape)
return result
packed_int_function_dict = {
"int7": {"pack": pack_uint7, "unpack": unpack_uint7},
"int6": {"pack": pack_uint6, "unpack": unpack_uint6},
"int5": {"pack": pack_uint5, "unpack": unpack_uint5},
"int4": {"pack": pack_uint4, "unpack": unpack_uint4},
"int3": {"pack": pack_uint3, "unpack": unpack_uint3},
"int2": {"pack": pack_uint2, "unpack": unpack_uint2},
"uint7": {"pack": pack_uint7, "unpack": unpack_uint7},
"uint6": {"pack": pack_uint6, "unpack": unpack_uint6},
"uint5": {"pack": pack_uint5, "unpack": unpack_uint5},
"uint4": {"pack": pack_uint4, "unpack": unpack_uint4},
"uint3": {"pack": pack_uint3, "unpack": unpack_uint3},
"uint2": {"pack": pack_uint2, "unpack": unpack_uint2},
"uint1": {"pack": pack_uint1, "unpack": unpack_uint1},
"bool": {"pack": pack_uint1, "unpack": unpack_uint1},
}