mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-29 05:02:09 +03:00
72 lines
3.0 KiB
Python
72 lines
3.0 KiB
Python
# pylint: disable=relative-beyond-top-level,redefined-builtin,protected-access
|
|
|
|
from typing import Tuple
|
|
|
|
import torch
|
|
|
|
from ...common import compile_func, int_mm_func # noqa: TID252
|
|
from ...packed_int import unpack_int_symetric # noqa: TID252
|
|
from ...dequantizer import quantize_int_mm, dequantize_symmetric, dequantize_symmetric_with_bias # noqa: TID252
|
|
|
|
from .forward import check_mats
|
|
|
|
|
|
def quantize_int_mm_input(input: torch.FloatTensor, scale: torch.FloatTensor) -> Tuple[torch.CharTensor, torch.FloatTensor]:
|
|
input = input.flatten(0,-2).to(dtype=scale.dtype)
|
|
input, input_scale = quantize_int_mm(input, dim=-1)
|
|
scale = torch.mul(input_scale, scale)
|
|
if scale.dtype == torch.float16: # fp16 will overflow
|
|
scale = scale.to(dtype=torch.float32)
|
|
return input, scale
|
|
|
|
|
|
def int8_matmul(
|
|
input: torch.FloatTensor,
|
|
weight: torch.Tensor,
|
|
scale: torch.FloatTensor,
|
|
bias: torch.FloatTensor = None,
|
|
svd_up: torch.FloatTensor = None,
|
|
svd_down: torch.FloatTensor = None,
|
|
quantized_weight_shape: torch.Size = None,
|
|
weights_dtype: str = None,
|
|
) -> torch.FloatTensor:
|
|
if quantized_weight_shape is not None:
|
|
weight = unpack_int_symetric(weight, quantized_weight_shape, weights_dtype, dtype=torch.int8).t_()
|
|
scale = scale.t()
|
|
return_dtype = input.dtype
|
|
output_shape = (*input.shape[:-1], weight.shape[-1])
|
|
if svd_up is not None:
|
|
input = input.flatten(0,-2)
|
|
if bias is not None:
|
|
bias = torch.addmm(bias.to(dtype=svd_down.dtype), torch.mm(input.to(dtype=svd_down.dtype), svd_down), svd_up)
|
|
else:
|
|
bias = torch.mm(torch.mm(input.to(dtype=svd_down.dtype), svd_down), svd_up)
|
|
input, scale = quantize_int_mm_input(input, scale)
|
|
input, weight = check_mats(input, weight)
|
|
if bias is not None:
|
|
return dequantize_symmetric_with_bias(int_mm_func(input, weight), scale, bias, dtype=return_dtype, result_shape=output_shape)
|
|
else:
|
|
return dequantize_symmetric(int_mm_func(input, weight), scale, dtype=return_dtype, result_shape=output_shape)
|
|
|
|
|
|
def quantized_linear_forward_int8_matmul(self, input: torch.FloatTensor) -> torch.FloatTensor:
|
|
if torch.numel(input) / input.shape[-1] < 32:
|
|
return torch.nn.functional.linear(input, self.sdnq_dequantizer(self.weight, self.scale, self.zero_point, self.svd_up, self.svd_down, skip_quantized_matmul=True), self.bias)
|
|
if self.sdnq_dequantizer.re_quantize_for_matmul:
|
|
weight, scale = self.sdnq_dequantizer.re_quantize_matmul(self.weight, self.scale, self.zero_point, None, None)
|
|
quantized_weight_shape = None
|
|
else:
|
|
weight, scale = self.weight, self.scale
|
|
quantized_weight_shape = self.sdnq_dequantizer.quantized_weight_shape if self.sdnq_dequantizer.is_packed else None
|
|
return int8_matmul(
|
|
input, weight, scale,
|
|
bias=self.bias,
|
|
svd_up=self.svd_up,
|
|
svd_down=self.svd_down,
|
|
quantized_weight_shape=quantized_weight_shape,
|
|
weights_dtype=self.sdnq_dequantizer.weights_dtype,
|
|
)
|
|
|
|
|
|
int8_matmul = compile_func(int8_matmul)
|