1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-29 05:02:09 +03:00
Files
sdnext/modules/sdnq/layers/linear/linear_fp8_tensorwise.py
2026-01-14 16:23:26 +03:00

73 lines
3.4 KiB
Python

# pylint: disable=relative-beyond-top-level,redefined-builtin,protected-access
from typing import Tuple
import torch
from ...common import compile_func # noqa: TID252
from ...packed_float import unpack_float # noqa: TID252
from ...dequantizer import quantize_fp_mm, dequantize_symmetric, dequantize_symmetric_with_bias # noqa: TID252
from .forward import check_mats
def quantize_fp_mm_input_tensorwise(input: torch.FloatTensor, scale: torch.FloatTensor, matmul_dtype: str = "float8_e4m3fn") -> Tuple[torch.Tensor, torch.FloatTensor]:
input = input.flatten(0,-2).to(dtype=scale.dtype)
input, input_scale = quantize_fp_mm(input, dim=-1, matmul_dtype=matmul_dtype)
scale = torch.mul(input_scale, scale)
if scale.dtype == torch.float16: # fp16 will overflow
scale = scale.to(dtype=torch.float32)
return input, scale
def fp8_matmul_tensorwise(
input: torch.FloatTensor,
weight: torch.Tensor,
scale: torch.FloatTensor,
bias: torch.FloatTensor = None,
svd_up: torch.FloatTensor = None,
svd_down: torch.FloatTensor = None,
quantized_weight_shape: torch.Size = None,
weights_dtype: str = None,
) -> torch.FloatTensor:
if quantized_weight_shape is not None:
weight = unpack_float(weight, quantized_weight_shape, weights_dtype).to(dtype=torch.float8_e4m3fn).t_()
scale = scale.t()
return_dtype = input.dtype
output_shape = (*input.shape[:-1], weight.shape[-1])
if svd_up is not None:
input = input.flatten(0,-2)
if bias is not None:
bias = torch.addmm(bias.to(dtype=svd_down.dtype), torch.mm(input.to(dtype=svd_down.dtype), svd_down), svd_up)
else:
bias = torch.mm(torch.mm(input.to(dtype=svd_down.dtype), svd_down), svd_up)
dummy_input_scale = torch.ones(1, device=input.device, dtype=torch.float32)
input, scale = quantize_fp_mm_input_tensorwise(input, scale)
input, weight = check_mats(input, weight)
if bias is not None:
return dequantize_symmetric_with_bias(torch._scaled_mm(input, weight, scale_a=dummy_input_scale, scale_b=dummy_input_scale, bias=None, out_dtype=scale.dtype), scale, bias, dtype=return_dtype, result_shape=output_shape)
else:
return dequantize_symmetric(torch._scaled_mm(input, weight, scale_a=dummy_input_scale, scale_b=dummy_input_scale, bias=None, out_dtype=scale.dtype), scale, dtype=return_dtype, result_shape=output_shape)
def quantized_linear_forward_fp8_matmul_tensorwise(self, input: torch.FloatTensor) -> torch.FloatTensor:
if torch.numel(input) / input.shape[-1] < 32:
return torch.nn.functional.linear(input, self.sdnq_dequantizer(self.weight, self.scale, self.zero_point, self.svd_up, self.svd_down, skip_quantized_matmul=True), self.bias)
if self.sdnq_dequantizer.re_quantize_for_matmul:
weight, scale = self.sdnq_dequantizer.re_quantize_matmul(self.weight, self.scale, self.zero_point, None, None)
quantized_weight_shape = None
else:
weight, scale = self.weight, self.scale
quantized_weight_shape = self.sdnq_dequantizer.quantized_weight_shape if self.sdnq_dequantizer.is_packed else None
return fp8_matmul_tensorwise(
input, weight, scale,
bias=self.bias,
svd_up=self.svd_up,
svd_down=self.svd_down,
quantized_weight_shape=quantized_weight_shape,
weights_dtype=self.sdnq_dequantizer.weights_dtype,
)
fp8_matmul_tensorwise = compile_func(fp8_matmul_tensorwise)