mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-29 05:02:09 +03:00
126 lines
4.9 KiB
Python
126 lines
4.9 KiB
Python
import os
|
|
import sys
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
sys.path.append(os.path.dirname(__file__))
|
|
from warplayer import warp # pylint: disable=wrong-import-position
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
|
return nn.Sequential(
|
|
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
|
padding=padding, dilation=dilation, bias=True),
|
|
nn.LeakyReLU(0.2, True)
|
|
)
|
|
|
|
def conv_bn(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
|
return nn.Sequential(
|
|
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
|
padding=padding, dilation=dilation, bias=False),
|
|
nn.BatchNorm2d(out_planes),
|
|
nn.LeakyReLU(0.2, True)
|
|
)
|
|
|
|
class ResConv(nn.Module):
|
|
def __init__(self, c, dilation=1):
|
|
super(ResConv, self).__init__()
|
|
self.conv = nn.Conv2d(c, c, 3, 1, dilation, dilation=dilation, groups=1\
|
|
)
|
|
self.beta = nn.Parameter(torch.ones((1, c, 1, 1)), requires_grad=True)
|
|
self.relu = nn.LeakyReLU(0.2, True)
|
|
|
|
def forward(self, x):
|
|
return self.relu(self.conv(x) * self.beta + x)
|
|
|
|
class IFBlock(nn.Module):
|
|
def __init__(self, in_planes, c=64):
|
|
super(IFBlock, self).__init__()
|
|
self.conv0 = nn.Sequential(
|
|
conv(in_planes, c//2, 3, 2, 1),
|
|
conv(c//2, c, 3, 2, 1),
|
|
)
|
|
self.convblock = nn.Sequential(
|
|
ResConv(c),
|
|
ResConv(c),
|
|
ResConv(c),
|
|
ResConv(c),
|
|
ResConv(c),
|
|
ResConv(c),
|
|
ResConv(c),
|
|
ResConv(c),
|
|
)
|
|
self.lastconv = nn.Sequential(
|
|
nn.ConvTranspose2d(c, 4*6, 4, 2, 1),
|
|
nn.PixelShuffle(2)
|
|
)
|
|
|
|
def forward(self, x, flow=None, scale=1):
|
|
x = F.interpolate(x, scale_factor= 1. / scale, mode="bilinear", align_corners=False)
|
|
if flow is not None:
|
|
flow = F.interpolate(flow, scale_factor= 1. / scale, mode="bilinear", align_corners=False) * 1. / scale
|
|
x = torch.cat((x, flow), 1)
|
|
feat = self.conv0(x)
|
|
feat = self.convblock(feat)
|
|
tmp = self.lastconv(feat)
|
|
tmp = F.interpolate(tmp, scale_factor=scale, mode="bilinear", align_corners=False)
|
|
flow = tmp[:, :4] * scale
|
|
mask = tmp[:, 4:5]
|
|
return flow, mask
|
|
|
|
class IFNet(nn.Module):
|
|
def __init__(self):
|
|
super(IFNet, self).__init__()
|
|
self.block0 = IFBlock(7, c=192)
|
|
self.block1 = IFBlock(8+4, c=128)
|
|
self.block2 = IFBlock(8+4, c=96)
|
|
self.block3 = IFBlock(8+4, c=64)
|
|
# self.contextnet = Contextnet()
|
|
# self.unet = Unet()
|
|
|
|
def forward( self, x, timestep=0.5, scale_list=[8, 4, 2, 1], training=False, fastmode=True, ensemble=False): # pylint: disable=dangerous-default-value, unused-argument
|
|
if training is False:
|
|
channel = x.shape[1] // 2
|
|
img0 = x[:, :channel]
|
|
img1 = x[:, channel:]
|
|
if not torch.is_tensor(timestep):
|
|
timestep = (x[:, :1].clone() * 0 + 1) * timestep
|
|
else:
|
|
timestep = timestep.repeat(1, 1, img0.shape[2], img0.shape[3])
|
|
flow_list = []
|
|
merged = []
|
|
mask_list = []
|
|
warped_img0 = img0
|
|
warped_img1 = img1
|
|
flow = None
|
|
mask = None
|
|
# loss_cons = 0
|
|
block = [self.block0, self.block1, self.block2, self.block3]
|
|
for i in range(4):
|
|
if flow is None:
|
|
flow, mask = block[i](torch.cat((img0[:, :3], img1[:, :3], timestep), 1), None, scale=scale_list[i])
|
|
if ensemble:
|
|
f1, m1 = block[i](torch.cat((img1[:, :3], img0[:, :3], 1-timestep), 1), None, scale=scale_list[i])
|
|
flow = (flow + torch.cat((f1[:, 2:4], f1[:, :2]), 1)) / 2
|
|
mask = (mask + (-m1)) / 2
|
|
else:
|
|
f0, m0 = block[i](torch.cat((warped_img0[:, :3], warped_img1[:, :3], timestep, mask), 1), flow, scale=scale_list[i])
|
|
if ensemble:
|
|
f1, m1 = block[i](torch.cat((warped_img1[:, :3], warped_img0[:, :3], 1-timestep, -mask), 1), torch.cat((flow[:, 2:4], flow[:, :2]), 1), scale=scale_list[i]) # pylint: disable=invalid-unary-operand-type
|
|
f0 = (f0 + torch.cat((f1[:, 2:4], f1[:, :2]), 1)) / 2
|
|
m0 = (m0 + (-m1)) / 2
|
|
flow = flow + f0
|
|
mask = mask + m0
|
|
mask_list.append(mask)
|
|
flow_list.append(flow)
|
|
warped_img0 = warp(img0, flow[:, :2])
|
|
warped_img1 = warp(img1, flow[:, 2:4])
|
|
merged.append((warped_img0, warped_img1))
|
|
mask_list[3] = torch.sigmoid(mask_list[3])
|
|
merged[3] = merged[3][0] * mask_list[3] + merged[3][1] * (1 - mask_list[3])
|
|
return flow_list, mask_list[3], merged
|