1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-29 05:02:09 +03:00
Files
sdnext/modules/ras/ras_attention.py
vladmandic cc0b0e8e3d cleanup todo
Signed-off-by: vladmandic <mandic00@live.com>
2026-01-19 11:10:05 +01:00

258 lines
11 KiB
Python

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import math
import torch
import torch.nn.functional as F
from diffusers.models.attention_processor import Attention
from . import ras_manager
class RASLuminaAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
used in the LuminaNextDiT model. It applies a s normalization layer and rotary embedding on query and key vector.
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
if ras_manager.MANAGER.sample_ratio < 1.0:
self.k_cache = None
self.v_cache = None
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
query_rotary_emb: Optional[torch.Tensor] = None,
key_rotary_emb: Optional[torch.Tensor] = None,
base_sequence_length: Optional[int] = None,
) -> torch.Tensor:
from diffusers.models.embeddings import apply_rotary_emb
is_self_attention = True if hidden_states.shape == encoder_hidden_states.shape else False
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = hidden_states.shape
# Get Query-Key-Value Pair
query = attn.to_q(hidden_states)
value = attn.to_v(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
query_dim = query.shape[-1]
inner_dim = key.shape[-1]
head_dim = query_dim // attn.heads
dtype = query.dtype
# Get key-value heads
kv_heads = inner_dim // head_dim
# Apply Query-Key Norm if needed
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
query = query.view(batch_size, -1, attn.heads, head_dim)
key = key.view(batch_size, -1, kv_heads, head_dim)
value = value.view(batch_size, -1, kv_heads, head_dim)
if ras_manager.MANAGER.sample_ratio < 1.0 and ras_manager.MANAGER.current_step == 0 and is_self_attention:
self.k_cache = None
self.v_cache = None
if ras_manager.MANAGER.sample_ratio < 1.0 and ras_manager.MANAGER.current_step > ras_manager.MANAGER.scheduler_end_step and is_self_attention:
self.k_cache = None
self.v_cache = None
# Apply RoPE if needed
if query_rotary_emb is not None:
if ras_manager.MANAGER.sample_ratio < 1.0 and ras_manager.MANAGER.is_RAS_step:
query = apply_rotary_emb(query, ras_manager.MANAGER.image_rotary_emb_skip, use_real=False)
else:
query = apply_rotary_emb(query, query_rotary_emb, use_real=False)
if key_rotary_emb is not None:
if ras_manager.MANAGER.sample_ratio < 1.0 and ras_manager.MANAGER.is_RAS_step:
key = apply_rotary_emb(key, ras_manager.MANAGER.image_rotary_emb_skip, use_real=False)
else:
key = apply_rotary_emb(key, key_rotary_emb, use_real=False)
if ras_manager.MANAGER.sample_ratio < 1.0 and (ras_manager.MANAGER.current_step == ras_manager.MANAGER.scheduler_start_step - 1 or ras_manager.MANAGER.current_step in ras_manager.MANAGER.error_reset_steps) and is_self_attention:
self.k_cache = key
self.v_cache = value
if ras_manager.MANAGER.sample_ratio < 1.0 and is_self_attention and ras_manager.MANAGER.is_RAS_step:
self.k_cache[:, ras_manager.MANAGER.other_patchified_index] = key
self.v_cache[:, ras_manager.MANAGER.other_patchified_index] = value
key = self.k_cache
value = self.v_cache
query, key = query.to(dtype), key.to(dtype)
if ras_manager.MANAGER.sample_ratio < 1.0 and is_self_attention and ras_manager.MANAGER.is_RAS_step:
if is_self_attention:
sequence_length = key.shape[1]
else:
sequence_length = base_sequence_length
# Apply proportional attention if true
if key_rotary_emb is None:
softmax_scale = None
else:
if base_sequence_length is not None:
softmax_scale = math.sqrt(math.log(sequence_length, base_sequence_length)) * attn.scale
else:
softmax_scale = attn.scale
# perform Grouped-qurey Attention (GQA)
n_rep = attn.heads // kv_heads
if n_rep >= 1:
key = key.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
value = value.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.bool().view(batch_size, 1, 1, -1)
if ras_manager.MANAGER.sample_ratio < 1.0 and is_self_attention and ras_manager.MANAGER.is_RAS_step:
attention_mask = attention_mask.expand(-1, attn.heads, query.shape[1], -1)
else:
attention_mask = attention_mask.expand(-1, attn.heads, sequence_length, -1)
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, scale=softmax_scale
)
hidden_states = hidden_states.transpose(1, 2).to(dtype)
return hidden_states
class RASJointAttnProcessor2_0:
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
if ras_manager.MANAGER.sample_ratio < 1.0:
self.k_cache = None
self.v_cache = None
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
*args,
**kwargs,
) -> torch.FloatTensor:
residual = hidden_states
batch_size = hidden_states.shape[0]
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
if ras_manager.MANAGER.sample_ratio < 1.0 and ras_manager.MANAGER.current_step == 0:
self.k_cache = None
self.v_cache = None
if ras_manager.MANAGER.sample_ratio < 1.0 and (ras_manager.MANAGER.current_step == ras_manager.MANAGER.scheduler_start_step - 1 or ras_manager.MANAGER.current_step in ras_manager.MANAGER.error_reset_steps):
self.k_cache = key
self.v_cache = value
if ras_manager.MANAGER.sample_ratio < 1.0 and ras_manager.MANAGER.is_RAS_step:
self.k_cache[:, :, ras_manager.MANAGER.other_patchified_index] = key
self.v_cache[:, :, ras_manager.MANAGER.other_patchified_index] = value
key = self.k_cache
value = self.v_cache
if ras_manager.MANAGER.sample_ratio < 1.0 and ras_manager.MANAGER.current_step > ras_manager.MANAGER.scheduler_end_step:
self.k_cache = None
self.v_cache = None
# `context` projections.
if encoder_hidden_states is not None:
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
query = torch.cat([query, encoder_hidden_states_query_proj], dim=2)
key = torch.cat([key, encoder_hidden_states_key_proj], dim=2)
value = torch.cat([value, encoder_hidden_states_value_proj], dim=2)
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
# Split the attention outputs.
hidden_states, encoder_hidden_states = (
hidden_states[:, : residual.shape[1]],
hidden_states[:, residual.shape[1] :],
)
if not attn.context_pre_only:
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if encoder_hidden_states is not None:
return hidden_states, encoder_hidden_states
else:
return hidden_states