mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
108 lines
4.8 KiB
Python
108 lines
4.8 KiB
Python
import cv2
|
|
import numpy as np
|
|
import torch
|
|
import huggingface_hub as hf
|
|
from modules import shared, processing, sd_models, devices
|
|
|
|
|
|
original_pipeline = None
|
|
|
|
|
|
def restore_pipeline():
|
|
global original_pipeline # pylint: disable=global-statement
|
|
if original_pipeline is not None:
|
|
shared.sd_model = original_pipeline
|
|
original_pipeline = None
|
|
|
|
|
|
def photo_maker(p: processing.StableDiffusionProcessing, app, model: str, input_images, trigger, strength, start): # pylint: disable=arguments-differ
|
|
global original_pipeline # pylint: disable=global-statement
|
|
from modules.face.photomaker_pipeline import PhotoMakerStableDiffusionXLPipeline
|
|
|
|
# prepare pipeline
|
|
if len(input_images) == 0:
|
|
shared.log.warning('PhotoMaker: no input images')
|
|
return None
|
|
|
|
if len(trigger) == 0:
|
|
shared.log.warning('PhotoMaker: no trigger word')
|
|
return None
|
|
|
|
c = shared.sd_model.__class__.__name__ if shared.sd_loaded else ''
|
|
if c != 'StableDiffusionXLPipeline':
|
|
shared.log.warning(f'PhotoMaker invalid base model: current={c} required=StableDiffusionXLPipeline')
|
|
return None
|
|
|
|
# validate prompt
|
|
if not p.all_prompts:
|
|
processing.process_init(p)
|
|
p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
|
|
trigger_ids = shared.sd_model.tokenizer.encode(trigger) + shared.sd_model.tokenizer_2.encode(trigger)
|
|
prompt_ids1 = shared.sd_model.tokenizer.encode(p.all_prompts[0])
|
|
prompt_ids2 = shared.sd_model.tokenizer_2.encode(p.all_prompts[0])
|
|
for t in trigger_ids:
|
|
if prompt_ids1.count(t) != 1:
|
|
shared.log.error(f'PhotoMaker: trigger word not matched in prompt: {trigger} ids={trigger_ids} prompt={p.all_prompts[0]} ids={prompt_ids1}')
|
|
return None
|
|
if prompt_ids2.count(t) != 1:
|
|
shared.log.error(f'PhotoMaker: trigger word not matched in prompt: {trigger} ids={trigger_ids} prompt={p.all_prompts[0]} ids={prompt_ids1}')
|
|
return None
|
|
|
|
# create new pipeline
|
|
original_pipeline = shared.sd_model # backup current pipeline definition
|
|
# orig_pipeline = shared.sd_model # backup current pipeline definition
|
|
shared.sd_model = sd_models.switch_pipe(PhotoMakerStableDiffusionXLPipeline, shared.sd_model)
|
|
shared.sd_model.restore_pipeline = restore_pipeline
|
|
# sd_models.copy_diffuser_options(shared.sd_model, orig_pipeline) # copy options from original pipeline
|
|
sd_models.set_diffuser_options(shared.sd_model) # set all model options such as fp16, offload, etc.
|
|
sd_models.apply_balanced_offload(shared.sd_model) # apply balanced offload
|
|
|
|
orig_prompt_attention = shared.opts.prompt_attention
|
|
shared.opts.data['prompt_attention'] = 'fixed' # otherwise need to deal with class_tokens_mask
|
|
p.task_args['input_id_images'] = input_images
|
|
p.task_args['start_merge_step'] = int(start * p.steps)
|
|
p.task_args['prompt'] = p.all_prompts[0] if p.all_prompts else p.prompt
|
|
|
|
is_v2 = 'v2' in model
|
|
if is_v2:
|
|
repo_id, fn = 'TencentARC/PhotoMaker-V2', 'photomaker-v2.bin'
|
|
else:
|
|
repo_id, fn = 'TencentARC/PhotoMaker', 'photomaker-v1.bin'
|
|
|
|
photomaker_path = hf.hf_hub_download(repo_id=repo_id, filename=fn, repo_type="model", cache_dir=shared.opts.hfcache_dir)
|
|
shared.log.debug(f'PhotoMaker: model="{model}" uri="{repo_id}/{fn}" images={len(input_images)} trigger={trigger} args={p.task_args}')
|
|
|
|
# load photomaker adapter
|
|
shared.sd_model.load_photomaker_adapter(
|
|
photomaker_path,
|
|
trigger_word=trigger,
|
|
weight_name='photomaker-v2.bin' if is_v2 else 'photomaker-v1.bin',
|
|
pm_version='v2' if is_v2 else 'v1',
|
|
device=devices.device,
|
|
cache_dir=shared.opts.hfcache_dir,
|
|
)
|
|
shared.sd_model.set_adapters(["photomaker"], adapter_weights=[strength])
|
|
|
|
# analyze faces
|
|
if is_v2:
|
|
id_embed_list = []
|
|
for i, source_image in enumerate(input_images):
|
|
faces = app.get(cv2.cvtColor(np.array(source_image), cv2.COLOR_RGB2BGR))
|
|
face = sorted(faces, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face
|
|
id_embed_list.append(torch.from_numpy(face['embedding']))
|
|
shared.log.debug(f'PhotoMaker: face={i+1} score={face.det_score:.2f} gender={"female" if face.gender==0 else "male"} age={face.age} bbox={face.bbox}')
|
|
p.task_args['id_embeds'] = torch.stack(id_embed_list).to(device=devices.device, dtype=devices.dtype)
|
|
|
|
# run processing
|
|
# processed: processing.Processed = processing.process_images(p)
|
|
p.extra_generation_params['PhotoMaker'] = f'{strength}'
|
|
|
|
# unload photomaker adapter
|
|
shared.sd_model.unload_lora_weights()
|
|
|
|
# restore original pipeline
|
|
shared.opts.data['prompt_attention'] = orig_prompt_attention
|
|
# shared.sd_model = orig_pipeline
|
|
return None
|
|
# return processed
|