mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-29 05:02:09 +03:00
775 lines
32 KiB
Python
775 lines
32 KiB
Python
import inspect
|
|
import math
|
|
from typing import Any, Callable, Dict, List, Optional, Union
|
|
|
|
import torch
|
|
from transformers import (
|
|
CLIPTextModelWithProjection,
|
|
CLIPTokenizer,
|
|
LlamaForCausalLM,
|
|
PreTrainedTokenizerFast,
|
|
T5EncoderModel,
|
|
T5Tokenizer,
|
|
)
|
|
|
|
from diffusers.image_processor import VaeImageProcessor
|
|
from diffusers.loaders import HiDreamImageLoraLoaderMixin
|
|
from diffusers.models import AutoencoderKL, HiDreamImageTransformer2DModel
|
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler, UniPCMultistepScheduler
|
|
from diffusers.utils import is_torch_xla_available, logging
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
|
from diffusers.pipelines.hidream_image.pipeline_output import HiDreamImagePipelineOutput
|
|
|
|
|
|
if is_torch_xla_available():
|
|
import torch_xla.core.xla_model as xm
|
|
|
|
XLA_AVAILABLE = True
|
|
else:
|
|
XLA_AVAILABLE = False
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
Examples:
|
|
```py
|
|
>>> import torch
|
|
>>> from transformers import PreTrainedTokenizerFast, LlamaForCausalLM
|
|
>>> from diffusers import UniPCMultistepScheduler, HiDreamImagePipeline, HiDreamImageTransformer2DModel
|
|
|
|
>>> scheduler = UniPCMultistepScheduler(
|
|
... flow_shift=3.0, prediction_type="flow_prediction", use_flow_sigmas=True
|
|
... )
|
|
|
|
>>> tokenizer_4 = PreTrainedTokenizerFast.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
|
|
>>> text_encoder_4 = LlamaForCausalLM.from_pretrained(
|
|
... "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
|
... output_hidden_states=True,
|
|
... output_attentions=True,
|
|
... torch_dtype=torch.bfloat16,
|
|
... )
|
|
|
|
>>> transformer = HiDreamImageTransformer2DModel.from_pretrained(
|
|
... "HiDream-ai/HiDream-I1-Full", subfolder="transformer", torch_dtype=torch.bfloat16
|
|
... )
|
|
|
|
>>> pipe = HiDreamImagePipeline.from_pretrained(
|
|
... "HiDream-ai/HiDream-I1-Full",
|
|
... scheduler=scheduler,
|
|
... tokenizer_4=tokenizer_4,
|
|
... text_encoder_4=text_encoder_4,
|
|
... transformer=transformer,
|
|
... torch_dtype=torch.bfloat16,
|
|
... )
|
|
>>> pipe.enable_model_cpu_offload()
|
|
|
|
>>> image = pipe(
|
|
... 'A cat holding a sign that says "Hi-Dreams.ai".',
|
|
... height=1024,
|
|
... width=1024,
|
|
... guidance_scale=5.0,
|
|
... num_inference_steps=50,
|
|
... generator=torch.Generator("cuda").manual_seed(0),
|
|
... ).images[0]
|
|
>>> image.save("output.png")
|
|
```
|
|
"""
|
|
|
|
|
|
@torch.cuda.amp.autocast(dtype=torch.float32)
|
|
def optimized_scale(positive_flat, negative_flat):
|
|
# Calculate dot production
|
|
dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True)
|
|
|
|
# Squared norm of uncondition
|
|
squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8
|
|
|
|
# st_star = v_cond^T * v_uncond / ||v_uncond||^2
|
|
st_star = dot_product / squared_norm
|
|
|
|
return st_star
|
|
|
|
|
|
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
|
def calculate_shift(
|
|
image_seq_len,
|
|
base_seq_len: int = 256,
|
|
max_seq_len: int = 4096,
|
|
base_shift: float = 0.5,
|
|
max_shift: float = 1.15,
|
|
):
|
|
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
|
b = base_shift - m * base_seq_len
|
|
mu = image_seq_len * m + b
|
|
return mu
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
|
def retrieve_timesteps(
|
|
scheduler,
|
|
num_inference_steps: Optional[int] = None,
|
|
device: Optional[Union[str, torch.device]] = None,
|
|
timesteps: Optional[List[int]] = None,
|
|
sigmas: Optional[List[float]] = None,
|
|
**kwargs,
|
|
):
|
|
r"""
|
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
|
|
|
Args:
|
|
scheduler (`SchedulerMixin`):
|
|
The scheduler to get timesteps from.
|
|
num_inference_steps (`int`):
|
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
|
must be `None`.
|
|
device (`str` or `torch.device`, *optional*):
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|
timesteps (`List[int]`, *optional*):
|
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
|
`num_inference_steps` and `sigmas` must be `None`.
|
|
sigmas (`List[float]`, *optional*):
|
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
|
`num_inference_steps` and `timesteps` must be `None`.
|
|
|
|
Returns:
|
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
|
second element is the number of inference steps.
|
|
"""
|
|
if timesteps is not None and sigmas is not None:
|
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
|
if timesteps is not None:
|
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
if not accepts_timesteps:
|
|
raise ValueError(
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
f" timestep schedules. Please check whether you are using the correct scheduler."
|
|
)
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
elif sigmas is not None:
|
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
if not accept_sigmas:
|
|
raise ValueError(
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
|
)
|
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
else:
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
return timesteps, num_inference_steps
|
|
|
|
|
|
class HiDreamImageCFGZeroPipeline(DiffusionPipeline, HiDreamImageLoraLoaderMixin):
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->text_encoder_4->transformer->vae"
|
|
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
|
|
|
def __init__(
|
|
self,
|
|
scheduler: FlowMatchEulerDiscreteScheduler,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModelWithProjection,
|
|
tokenizer: CLIPTokenizer,
|
|
text_encoder_2: CLIPTextModelWithProjection,
|
|
tokenizer_2: CLIPTokenizer,
|
|
text_encoder_3: T5EncoderModel,
|
|
tokenizer_3: T5Tokenizer,
|
|
text_encoder_4: LlamaForCausalLM,
|
|
tokenizer_4: PreTrainedTokenizerFast,
|
|
transformer: HiDreamImageTransformer2DModel,
|
|
):
|
|
super().__init__()
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
text_encoder_2=text_encoder_2,
|
|
text_encoder_3=text_encoder_3,
|
|
text_encoder_4=text_encoder_4,
|
|
tokenizer=tokenizer,
|
|
tokenizer_2=tokenizer_2,
|
|
tokenizer_3=tokenizer_3,
|
|
tokenizer_4=tokenizer_4,
|
|
scheduler=scheduler,
|
|
transformer=transformer,
|
|
)
|
|
self.vae_scale_factor = (
|
|
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
|
)
|
|
# HiDreamImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
|
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
|
self.default_sample_size = 128
|
|
if getattr(self, "tokenizer_4", None) is not None:
|
|
self.tokenizer_4.pad_token = self.tokenizer_4.eos_token
|
|
|
|
def _get_t5_prompt_embeds(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
max_sequence_length: int = 128,
|
|
device: Optional[torch.device] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
):
|
|
device = device or self._execution_device
|
|
dtype = dtype or self.text_encoder_3.dtype
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
|
|
text_inputs = self.tokenizer_3(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=min(max_sequence_length, self.tokenizer_3.model_max_length),
|
|
truncation=True,
|
|
add_special_tokens=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
attention_mask = text_inputs.attention_mask
|
|
untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
|
removed_text = self.tokenizer_3.batch_decode(
|
|
untruncated_ids[:, min(max_sequence_length, self.tokenizer_3.model_max_length) - 1 : -1]
|
|
)
|
|
logger.warning(
|
|
"The following part of your input was truncated because `max_sequence_length` is set to "
|
|
f" {min(max_sequence_length, self.tokenizer_3.model_max_length)} tokens: {removed_text}"
|
|
)
|
|
|
|
prompt_embeds = self.text_encoder_3(text_input_ids.to(device), attention_mask=attention_mask.to(device))[0]
|
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
|
return prompt_embeds
|
|
|
|
def _get_clip_prompt_embeds(
|
|
self,
|
|
tokenizer,
|
|
text_encoder,
|
|
prompt: Union[str, List[str]],
|
|
max_sequence_length: int = 128,
|
|
device: Optional[torch.device] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
):
|
|
device = device or self._execution_device
|
|
dtype = dtype or text_encoder.dtype
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
|
|
text_inputs = tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=min(max_sequence_length, 218),
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, 218 - 1 : -1])
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {218} tokens: {removed_text}"
|
|
)
|
|
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
|
|
|
# Use pooled output of CLIPTextModel
|
|
prompt_embeds = prompt_embeds[0]
|
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
|
return prompt_embeds
|
|
|
|
def _get_llama3_prompt_embeds(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
max_sequence_length: int = 128,
|
|
device: Optional[torch.device] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
):
|
|
device = device or self._execution_device
|
|
dtype = dtype or self.text_encoder_4.dtype
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
|
|
text_inputs = self.tokenizer_4(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=min(max_sequence_length, self.tokenizer_4.model_max_length),
|
|
truncation=True,
|
|
add_special_tokens=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
attention_mask = text_inputs.attention_mask
|
|
untruncated_ids = self.tokenizer_4(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
|
removed_text = self.tokenizer_4.batch_decode(
|
|
untruncated_ids[:, min(max_sequence_length, self.tokenizer_4.model_max_length) - 1 : -1]
|
|
)
|
|
logger.warning(
|
|
"The following part of your input was truncated because `max_sequence_length` is set to "
|
|
f" {min(max_sequence_length, self.tokenizer_4.model_max_length)} tokens: {removed_text}"
|
|
)
|
|
|
|
outputs = self.text_encoder_4(
|
|
text_input_ids.to(device),
|
|
attention_mask=attention_mask.to(device),
|
|
output_hidden_states=True,
|
|
output_attentions=True,
|
|
)
|
|
|
|
prompt_embeds = outputs.hidden_states[1:]
|
|
prompt_embeds = torch.stack(prompt_embeds, dim=0)
|
|
return prompt_embeds
|
|
|
|
def encode_prompt(
|
|
self,
|
|
prompt: Union[str, List[str]],
|
|
prompt_2: Union[str, List[str]],
|
|
prompt_3: Union[str, List[str]],
|
|
prompt_4: Union[str, List[str]],
|
|
device: Optional[torch.device] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
num_images_per_prompt: int = 1,
|
|
do_classifier_free_guidance: bool = True,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_4: Optional[Union[str, List[str]]] = None,
|
|
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
max_sequence_length: int = 128,
|
|
lora_scale: Optional[float] = None,
|
|
):
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
if prompt is not None:
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds[0].shape[0] if isinstance(prompt_embeds, list) else prompt_embeds.shape[0]
|
|
|
|
prompt_embeds, pooled_prompt_embeds = self._encode_prompt(
|
|
prompt=prompt,
|
|
prompt_2=prompt_2,
|
|
prompt_3=prompt_3,
|
|
prompt_4=prompt_4,
|
|
device=device,
|
|
dtype=dtype,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
prompt_embeds=prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
max_sequence_length=max_sequence_length,
|
|
)
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
negative_prompt = negative_prompt or ""
|
|
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
|
negative_prompt_3 = negative_prompt_3 or negative_prompt
|
|
negative_prompt_4 = negative_prompt_4 or negative_prompt
|
|
|
|
# normalize str to list
|
|
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
|
negative_prompt_2 = (
|
|
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
|
)
|
|
negative_prompt_3 = (
|
|
batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
|
|
)
|
|
negative_prompt_4 = (
|
|
batch_size * [negative_prompt_4] if isinstance(negative_prompt_4, str) else negative_prompt_4
|
|
)
|
|
|
|
if prompt is not None and type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
|
|
negative_prompt_embeds, negative_pooled_prompt_embeds = self._encode_prompt(
|
|
prompt=negative_prompt,
|
|
prompt_2=negative_prompt_2,
|
|
prompt_3=negative_prompt_3,
|
|
prompt_4=negative_prompt_4,
|
|
device=device,
|
|
dtype=dtype,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
prompt_embeds=negative_prompt_embeds,
|
|
pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
|
max_sequence_length=max_sequence_length,
|
|
)
|
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
|
|
|
def _encode_prompt(
|
|
self,
|
|
prompt: Union[str, List[str]],
|
|
prompt_2: Union[str, List[str]],
|
|
prompt_3: Union[str, List[str]],
|
|
prompt_4: Union[str, List[str]],
|
|
device: Optional[torch.device] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
num_images_per_prompt: int = 1,
|
|
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
max_sequence_length: int = 128,
|
|
):
|
|
device = device or self._execution_device
|
|
if prompt is not None:
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds[0].shape[0] if isinstance(prompt_embeds, list) else prompt_embeds.shape[0]
|
|
|
|
if pooled_prompt_embeds is None:
|
|
prompt_2 = prompt_2 or prompt
|
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
|
|
|
pooled_prompt_embeds_1 = self._get_clip_prompt_embeds(
|
|
self.tokenizer, self.text_encoder, prompt, max_sequence_length, device, dtype
|
|
)
|
|
pooled_prompt_embeds_2 = self._get_clip_prompt_embeds(
|
|
self.tokenizer_2, self.text_encoder_2, prompt_2, max_sequence_length, device, dtype
|
|
)
|
|
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds_1, pooled_prompt_embeds_2], dim=-1)
|
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt)
|
|
pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
|
|
|
if prompt_embeds is None:
|
|
prompt_3 = prompt_3 or prompt
|
|
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
|
|
|
|
prompt_4 = prompt_4 or prompt
|
|
prompt_4 = [prompt_4] if isinstance(prompt_4, str) else prompt_4
|
|
|
|
t5_prompt_embeds = self._get_t5_prompt_embeds(prompt_3, max_sequence_length, device, dtype)
|
|
llama3_prompt_embeds = self._get_llama3_prompt_embeds(prompt_4, max_sequence_length, device, dtype)
|
|
|
|
_, seq_len, _ = t5_prompt_embeds.shape
|
|
t5_prompt_embeds = t5_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
t5_prompt_embeds = t5_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
|
|
_, _, seq_len, dim = llama3_prompt_embeds.shape
|
|
llama3_prompt_embeds = llama3_prompt_embeds.repeat(1, 1, num_images_per_prompt, 1)
|
|
llama3_prompt_embeds = llama3_prompt_embeds.view(-1, batch_size * num_images_per_prompt, seq_len, dim)
|
|
|
|
prompt_embeds = [t5_prompt_embeds, llama3_prompt_embeds]
|
|
|
|
return prompt_embeds, pooled_prompt_embeds
|
|
|
|
def enable_vae_slicing(self):
|
|
r"""
|
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
|
"""
|
|
self.vae.enable_slicing()
|
|
|
|
def disable_vae_slicing(self):
|
|
r"""
|
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
|
computing decoding in one step.
|
|
"""
|
|
self.vae.disable_slicing()
|
|
|
|
def enable_vae_tiling(self):
|
|
r"""
|
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
|
processing larger images.
|
|
"""
|
|
self.vae.enable_tiling()
|
|
|
|
def disable_vae_tiling(self):
|
|
r"""
|
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
|
computing decoding in one step.
|
|
"""
|
|
self.vae.disable_tiling()
|
|
|
|
def prepare_latents(
|
|
self,
|
|
batch_size,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
dtype,
|
|
device,
|
|
generator,
|
|
latents=None,
|
|
):
|
|
# VAE applies 8x compression on images but we must also account for packing which requires
|
|
# latent height and width to be divisible by 2.
|
|
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
|
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
|
|
|
shape = (batch_size, num_channels_latents, height, width)
|
|
|
|
if latents is None:
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
else:
|
|
if latents.shape != shape:
|
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
|
latents = latents.to(device)
|
|
return latents
|
|
|
|
@property
|
|
def guidance_scale(self):
|
|
return self._guidance_scale
|
|
|
|
@property
|
|
def do_classifier_free_guidance(self):
|
|
return self._guidance_scale > 1
|
|
|
|
@property
|
|
def attention_kwargs(self):
|
|
return self._attention_kwargs
|
|
|
|
@property
|
|
def num_timesteps(self):
|
|
return self._num_timesteps
|
|
|
|
@property
|
|
def interrupt(self):
|
|
return self._interrupt
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
prompt_3: Optional[Union[str, List[str]]] = None,
|
|
prompt_4: Optional[Union[str, List[str]]] = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 50,
|
|
sigmas: Optional[List[float]] = None,
|
|
guidance_scale: float = 5.0,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_4: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|
max_sequence_length: int = 128,
|
|
use_cfg_zero_star: Optional[bool] = True,
|
|
use_zero_init: Optional[bool] = True,
|
|
zero_steps: Optional[int] = 0,
|
|
):
|
|
height = height or self.default_sample_size * self.vae_scale_factor
|
|
width = width or self.default_sample_size * self.vae_scale_factor
|
|
|
|
division = self.vae_scale_factor * 2
|
|
S_max = (self.default_sample_size * self.vae_scale_factor) ** 2
|
|
scale = S_max / (width * height)
|
|
scale = math.sqrt(scale)
|
|
width, height = int(width * scale // division * division), int(height * scale // division * division)
|
|
|
|
self._guidance_scale = guidance_scale
|
|
self._attention_kwargs = attention_kwargs
|
|
self._interrupt = False
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
elif prompt_embeds is not None:
|
|
batch_size = prompt_embeds[0].shape[0] if isinstance(prompt_embeds, list) else prompt_embeds.shape[0]
|
|
else:
|
|
batch_size = 1
|
|
|
|
device = self._execution_device
|
|
|
|
lora_scale = self.attention_kwargs.get("scale", None) if self.attention_kwargs is not None else None
|
|
(
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds,
|
|
) = self.encode_prompt(
|
|
prompt=prompt,
|
|
prompt_2=prompt_2,
|
|
prompt_3=prompt_3,
|
|
prompt_4=prompt_4,
|
|
negative_prompt=negative_prompt,
|
|
negative_prompt_2=negative_prompt_2,
|
|
negative_prompt_3=negative_prompt_3,
|
|
negative_prompt_4=negative_prompt_4,
|
|
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
max_sequence_length=max_sequence_length,
|
|
lora_scale=lora_scale,
|
|
)
|
|
|
|
if self.do_classifier_free_guidance:
|
|
prompt_embeds_arr = []
|
|
for n, p in zip(negative_prompt_embeds, prompt_embeds):
|
|
if len(n.shape) == 3:
|
|
prompt_embeds_arr.append(torch.cat([n, p], dim=0))
|
|
else:
|
|
prompt_embeds_arr.append(torch.cat([n, p], dim=1))
|
|
prompt_embeds = prompt_embeds_arr
|
|
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
|
|
|
# 4. Prepare latent variables
|
|
num_channels_latents = self.transformer.config.in_channels
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
pooled_prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
if latents.shape[-2] != latents.shape[-1]:
|
|
B, C, H, W = latents.shape
|
|
pH, pW = H // self.transformer.config.patch_size, W // self.transformer.config.patch_size
|
|
|
|
img_sizes = torch.tensor([pH, pW], dtype=torch.int64).reshape(-1)
|
|
img_ids = torch.zeros(pH, pW, 3)
|
|
img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH)[:, None]
|
|
img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW)[None, :]
|
|
img_ids = img_ids.reshape(pH * pW, -1)
|
|
img_ids_pad = torch.zeros(self.transformer.max_seq, 3)
|
|
img_ids_pad[: pH * pW, :] = img_ids
|
|
|
|
img_sizes = img_sizes.unsqueeze(0).to(latents.device)
|
|
img_ids = img_ids_pad.unsqueeze(0).to(latents.device)
|
|
if self.do_classifier_free_guidance:
|
|
img_sizes = img_sizes.repeat(2 * B, 1)
|
|
img_ids = img_ids.repeat(2 * B, 1, 1)
|
|
else:
|
|
img_sizes = img_ids = None
|
|
|
|
# 5. Prepare timesteps
|
|
mu = calculate_shift(self.transformer.max_seq)
|
|
scheduler_kwargs = {"mu": mu}
|
|
if isinstance(self.scheduler, UniPCMultistepScheduler):
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) # , shift=math.exp(mu))
|
|
timesteps = self.scheduler.timesteps
|
|
else:
|
|
timesteps, num_inference_steps = retrieve_timesteps(
|
|
self.scheduler,
|
|
num_inference_steps,
|
|
device,
|
|
sigmas=sigmas,
|
|
**scheduler_kwargs,
|
|
)
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|
self._num_timesteps = len(timesteps)
|
|
|
|
# 6. Denoising loop
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
if self.interrupt:
|
|
continue
|
|
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
|
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
|
timestep = t.expand(latent_model_input.shape[0])
|
|
|
|
noise_pred = self.transformer(
|
|
hidden_states=latent_model_input,
|
|
timesteps=timestep,
|
|
encoder_hidden_states_t5=prompt_embeds[0],
|
|
encoder_hidden_states_llama3=prompt_embeds[1],
|
|
pooled_embeds=pooled_prompt_embeds,
|
|
# img_sizes=img_sizes,
|
|
# img_ids=img_ids,
|
|
return_dict=False,
|
|
)[0]
|
|
noise_pred = -noise_pred
|
|
|
|
# perform guidance
|
|
if self.do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
if use_cfg_zero_star:
|
|
positive_flat = noise_pred_text.view(batch_size, -1)
|
|
negative_flat = noise_pred_uncond.view(batch_size, -1)
|
|
|
|
alpha = optimized_scale(positive_flat,negative_flat)
|
|
alpha = alpha.view(batch_size, *([1] * (len(noise_pred_text.shape) - 1)))
|
|
alpha = alpha.to(positive_flat.dtype)
|
|
|
|
if (i <= zero_steps) and use_zero_init:
|
|
noise_pred = noise_pred_text*0.
|
|
else:
|
|
noise_pred = noise_pred_uncond * alpha + guidance_scale * (noise_pred_text - noise_pred_uncond * alpha)
|
|
else:
|
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
else:
|
|
if (i <= zero_steps) and use_zero_init:
|
|
noise_pred = noise_pred*0.
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents_dtype = latents.dtype
|
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
|
|
|
if latents.dtype != latents_dtype:
|
|
if torch.backends.mps.is_available():
|
|
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
|
latents = latents.to(latents_dtype)
|
|
|
|
if callback_on_step_end is not None:
|
|
callback_kwargs = {}
|
|
for k in callback_on_step_end_tensor_inputs:
|
|
callback_kwargs[k] = locals()[k]
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
|
|
|
latents = callback_outputs.pop("latents", latents)
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
|
|
if XLA_AVAILABLE:
|
|
xm.mark_step()
|
|
|
|
if output_type == "latent":
|
|
image = latents
|
|
|
|
else:
|
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
|
|
|
image = self.vae.decode(latents, return_dict=False)[0]
|
|
image = self.image_processor.postprocess(image, output_type=output_type)
|
|
|
|
# Offload all models
|
|
self.maybe_free_model_hooks()
|
|
|
|
if not return_dict:
|
|
return (image,)
|
|
|
|
return HiDreamImagePipelineOutput(images=image)
|