import math import random import gradio as gr from modules import images, processing, scripts_manager from modules.processing import Processed from modules.shared import opts, state, log class Script(scripts_manager.Script): def title(self): return "Loopback" def show(self, is_img2img): return True def ui(self, is_img2img): with gr.Row(): gr.HTML("  Loopback
") with gr.Row(): loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=2, elem_id=self.elem_id("loops")) final_denoising_strength = gr.Slider(minimum=0, maximum=1, step=0.01, label='Final strength', value=0.5, elem_id=self.elem_id("final_denoising_strength")) with gr.Row(): denoising_curve = gr.Dropdown(label="Strength curve", choices=["Aggressive", "Linear", "Lazy"], value="Linear") with gr.Row(): randomize_seed = gr.Checkbox(label="Randomize seed after each loop iteration", value=False) return [loops, final_denoising_strength, denoising_curve, randomize_seed] def run(self, p, loops, final_denoising_strength, denoising_curve, randomize_seed): # pylint: disable=arguments-differ processing.fix_seed(p) initial_batch_count = p.n_iter p.extra_generation_params['Loopback'] = final_denoising_strength p.batch_size = 1 p.n_iter = 1 info = None initial_seed = None initial_info = None initial_denoising_strength = p.denoising_strength initial_color_corrections = [processing.setup_color_correction(p.init_images[0])] if p.init_images is not None and len(p.init_images) > 0 else None grids = [] all_images = [] initial_init_images = p.init_images original_inpainting_fill = p.inpainting_fill state.job_count = loops * initial_batch_count history = [] def calculate_denoising_strength(loop): strength = initial_denoising_strength if loops == 1: return strength progress = loop / (loops - 1) if denoising_curve == "Aggressive": strength = math.sin((progress) * math.pi * 0.5) elif denoising_curve == "Lazy": strength = 1 - math.cos((progress) * math.pi * 0.5) else: strength = progress change = (final_denoising_strength - initial_denoising_strength) * strength return initial_denoising_strength + change for _n in range(initial_batch_count): p.init_images = initial_init_images p.denoising_strength = initial_denoising_strength last_image = None for i in range(loops): p.n_iter = 1 p.batch_size = 1 p.do_not_save_grid = True if opts.img2img_color_correction: p.color_corrections = initial_color_corrections processed = processing.process_images(p) if processed is None: log.error("Loopback: processing output is none") return Processed(p, [], None, None) if state.interrupted or state.skipped: break if initial_seed is None: initial_seed = processed.seed initial_info = processed.info if randomize_seed: p.seed = random.randrange(4294967294) p.all_seeds = [p.seed] p.seed = processed.seed + 1 # why? p.denoising_strength = calculate_denoising_strength(i + 1) last_image = processed.images[0] p.init_images = [last_image] log.info(f'Loopback: iteration={i} seed={p.seed} curve={denoising_curve} strength={p.denoising_strength}:{final_denoising_strength}') if initial_batch_count == 1: history.append(last_image) all_images.append(last_image) if (initial_batch_count > 1) and (not state.skipped) and (not state.interrupted): history.append(last_image) all_images.append(last_image) p.inpainting_fill = original_inpainting_fill if state.interrupted: break if len(history) > 1: grid = images.image_grid(history, rows=1) if opts.grid_save: images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, grid=True, p=p) if opts.return_grid: grids.append(grid) all_images = grids + all_images processed = Processed(p, all_images, initial_seed, initial_info) return processed