""" Additional params for StableVideoDiffusion """ import os import torch import gradio as gr from modules import scripts_manager, processing, shared, sd_models, images, modelloader models = { "SVD 1.0": "stabilityai/stable-video-diffusion-img2vid", "SVD XT 1.0": "stabilityai/stable-video-diffusion-img2vid-xt", "SVD XT 1.1": "stabilityai/stable-video-diffusion-img2vid-xt-1-1", } class Script(scripts_manager.Script): def title(self): return 'Video: Stable Video Diffusion' def show(self, is_img2img): return is_img2img # return signature is array of gradio components def ui(self, is_img2img): with gr.Row(): gr.HTML('  Stable Video Diffusion
') with gr.Row(): model = gr.Dropdown(label='Model', choices=list(models), value=list(models)[0]) with gr.Row(): num_frames = gr.Slider(label='Frames', minimum=1, maximum=50, step=1, value=14) min_guidance_scale = gr.Slider(label='Min guidance', minimum=0.0, maximum=10.0, step=0.1, value=1.0) max_guidance_scale = gr.Slider(label='Max guidance', minimum=0.0, maximum=10.0, step=0.1, value=3.0) with gr.Row(): decode_chunk_size = gr.Slider(label='Decode chunks', minimum=1, maximum=25, step=1, value=1) motion_bucket_id = gr.Slider(label='Motion level', minimum=0, maximum=1, step=0.05, value=0.5) noise_aug_strength = gr.Slider(label='Noise strength', minimum=0.0, maximum=1.0, step=0.01, value=0.1) with gr.Row(): override_resolution = gr.Checkbox(label='Override resolution', value=True) with gr.Row(): from modules.ui_sections import create_video_inputs video_type, duration, gif_loop, mp4_pad, mp4_interpolate = create_video_inputs(tab='img2img' if is_img2img else 'txt2img') return [model, num_frames, override_resolution, min_guidance_scale, max_guidance_scale, decode_chunk_size, motion_bucket_id, noise_aug_strength, video_type, duration, gif_loop, mp4_pad, mp4_interpolate] def _encode_image(self, image: torch.Tensor, device, num_videos_per_prompt, do_classifier_free_guidance): image = image.to(device=device, dtype=shared.sd_model.vae.dtype) shared.log.debug(f'Video encode: type=svd input={image.shape} dtype={image.dtype} device={image.device}') image_latents = shared.sd_model.vae.encode(image).latent_dist.mode() image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1) if do_classifier_free_guidance: negative_image_latents = torch.zeros_like(image_latents) image_latents = torch.cat([negative_image_latents, image_latents]) return image_latents def _decode_latents(self, latents: torch.Tensor, num_frames: int, decode_chunk_size: int = 14): shared.log.debug(f'Video decode: type=svd input={latents.shape} dtype={latents.dtype} device={latents.device} chunk={decode_chunk_size} frames={num_frames}') latents = latents.flatten(0, 1) latents = 1 / shared.sd_model.vae.config.scaling_factor * latents frames = [] for i in range(0, latents.shape[0], decode_chunk_size): num_frames_in = latents[i : i + decode_chunk_size].shape[0] decode_kwargs = { "num_frames": num_frames_in } frame = shared.sd_model.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample frames.append(frame) frames = torch.cat(frames, dim=0) frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4) frames = frames.float() return frames def run(self, p: processing.StableDiffusionProcessing, model, num_frames, override_resolution, min_guidance_scale, max_guidance_scale, decode_chunk_size, motion_bucket_id, noise_aug_strength, video_type, duration, gif_loop, mp4_pad, mp4_interpolate): # pylint: disable=arguments-differ, unused-argument image = getattr(p, 'init_images', None) if image is None or len(image) == 0: shared.log.error('SVD: no init_images') return None else: image = image[0] # load/download model on-demand model_path = models[model] model_name = os.path.basename(model_path) has_checkpoint = sd_models.get_closest_checkpoint_match(model_path) if has_checkpoint is None: shared.log.error(f'SVD: no checkpoint for {model_name}') modelloader.load_reference(model_path, variant='fp16') c = shared.sd_model.__class__.__name__ model_loaded = shared.sd_model.sd_checkpoint_info.model_name if shared.sd_loaded else None if model_name != model_loaded or c != 'StableVideoDiffusionPipeline': from diffusers import StableVideoDiffusionPipeline # pylint: disable=unused-import shared.opts.sd_model_checkpoint = model_path sd_models.reload_model_weights() shared.sd_model._encode_vae_image = self._encode_image # pylint: disable=protected-access shared.sd_model.decode_latents = self._decode_latents # pylint: disable=protected-access # set params if override_resolution: p.width = 1024 p.height = 576 image = images.resize_image(resize_mode=2, im=image, width=p.width, height=p.height, upscaler_name=None, output_type='pil') else: p.width = image.width p.height = image.height p.ops.append('video') p.do_not_save_grid = True p.init_images = [image] p.sampler_name = 'Default' # svd does not support non-default sampler p.task_args['output_type'] = 'pil' p.task_args['generator'] = torch.manual_seed(p.seed) # svd does not support gpu based generator p.task_args['image'] = image p.task_args['width'] = p.width p.task_args['height'] = p.height p.task_args['num_frames'] = num_frames p.task_args['decode_chunk_size'] = decode_chunk_size p.task_args['motion_bucket_id'] = round(255 * motion_bucket_id) p.task_args['noise_aug_strength'] = noise_aug_strength p.task_args['num_inference_steps'] = p.steps p.task_args['min_guidance_scale'] = min_guidance_scale p.task_args['max_guidance_scale'] = max_guidance_scale shared.log.debug(f'SVD: args={p.task_args}') # run processing processed = processing.process_images(p) if video_type != 'None': images.save_video(p, filename=None, images=processed.images, video_type=video_type, duration=duration, loop=gif_loop, pad=mp4_pad, interpolate=mp4_interpolate) return processed