import math import gradio as gr from PIL import Image from modules import processing, shared, images, devices, scripts_manager from modules.processing import get_processed from modules.shared import opts, state, log class Script(scripts_manager.Script): def title(self): return "SD Upscale" def show(self, is_img2img): return is_img2img def ui(self, is_img2img): with gr.Row(): info = gr.HTML("  SD Upscale
") with gr.Row(): overlap = gr.Slider(minimum=0, maximum=256, step=16, label='Tile overlap', value=64, elem_id=self.elem_id("overlap")) scale_factor = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label='Scale Factor', value=2.0, elem_id=self.elem_id("scale_factor")) with gr.Row(): upscaler_index = gr.Dropdown(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index", elem_id=self.elem_id("upscaler_index")) return [info, overlap, upscaler_index, scale_factor] def run(self, p, _, overlap, upscaler_index, scale_factor): # pylint: disable=arguments-differ init_img = None if hasattr(p, 'init_images') and p.init_images is not None: init_img = p.init_images[0] elif hasattr(p.task_args, 'image') and p.task_args['image'] is not None: init_img = p.task_args['image'][0] if init_img is None: return None init_img = images.flatten(init_img, opts.img2img_background_color) if isinstance(upscaler_index, str): upscaler_index = [x.name.lower() for x in shared.sd_upscalers].index(upscaler_index.lower()) processing.fix_seed(p) upscaler = shared.sd_upscalers[upscaler_index] p.extra_generation_params["SD upscale overlap"] = overlap p.extra_generation_params["SD upscale upscaler"] = upscaler.name initial_info = None seed = p.seed if upscaler.name != "None": img = upscaler.scaler.upscale(init_img, scale_factor, upscaler.data_path) else: img = init_img devices.torch_gc() grid = images.split_grid(img, tile_w=init_img.width, tile_h=init_img.height, overlap=overlap) batch_size = p.batch_size upscale_count = p.n_iter p.n_iter = 1 p.do_not_save_grid = True p.do_not_save_samples = True work = [] for _y, _h, row in grid.tiles: for tiledata in row: work.append(tiledata[2]) batch_count = math.ceil(len(work) / batch_size) state.job_count = batch_count * upscale_count log.info(f"SD upscale: images={len(work)} tiles={len(grid.tiles)} batches={state.job_count}") result_images = [] for n in range(upscale_count): start_seed = seed + n p.seed = start_seed work_results = [] for i in range(batch_count): p.batch_size = batch_size p.init_images = work[i * batch_size:(i + 1) * batch_size] processed = processing.process_images(p) if initial_info is None: initial_info = processed.info p.seed = processed.seed + 1 work_results += processed.images image_index = 0 for _y, _h, row in grid.tiles: for tiledata in row: tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height)) image_index += 1 combined_image = images.combine_grid(grid) result_images.append(combined_image) if opts.samples_save: images.save_image(combined_image, p.outpath_samples, "", start_seed, p.prompt, opts.samples_format, info=initial_info, p=p) processed = get_processed(p, result_images, seed, initial_info) log.info(f"SD upscale: images={result_images}") return processed