import math
import random
import gradio as gr
from modules import images, processing, scripts_manager
from modules.processing import Processed
from modules.shared import opts, state, log
class Script(scripts_manager.Script):
def title(self):
return "Loopback"
def show(self, is_img2img):
return True
def ui(self, is_img2img):
with gr.Row():
gr.HTML("  Loopback
")
with gr.Row():
loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=2, elem_id=self.elem_id("loops"))
final_denoising_strength = gr.Slider(minimum=0, maximum=1, step=0.01, label='Final strength', value=0.5, elem_id=self.elem_id("final_denoising_strength"))
with gr.Row():
denoising_curve = gr.Dropdown(label="Strength curve", choices=["Aggressive", "Linear", "Lazy"], value="Linear")
with gr.Row():
randomize_seed = gr.Checkbox(label="Randomize seed after each loop iteration", value=False)
return [loops, final_denoising_strength, denoising_curve, randomize_seed]
def run(self, p, loops, final_denoising_strength, denoising_curve, randomize_seed): # pylint: disable=arguments-differ
processing.fix_seed(p)
initial_batch_count = p.n_iter
p.extra_generation_params['Loopback'] = final_denoising_strength
p.batch_size = 1
p.n_iter = 1
info = None
initial_seed = None
initial_info = None
initial_denoising_strength = p.denoising_strength
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])] if p.init_images is not None and len(p.init_images) > 0 else None
grids = []
all_images = []
initial_init_images = p.init_images
original_inpainting_fill = p.inpainting_fill
state.job_count = loops * initial_batch_count
history = []
def calculate_denoising_strength(loop):
strength = initial_denoising_strength
if loops == 1:
return strength
progress = loop / (loops - 1)
if denoising_curve == "Aggressive":
strength = math.sin((progress) * math.pi * 0.5)
elif denoising_curve == "Lazy":
strength = 1 - math.cos((progress) * math.pi * 0.5)
else:
strength = progress
change = (final_denoising_strength - initial_denoising_strength) * strength
return initial_denoising_strength + change
for _n in range(initial_batch_count):
p.init_images = initial_init_images
p.denoising_strength = initial_denoising_strength
last_image = None
for i in range(loops):
p.n_iter = 1
p.batch_size = 1
p.do_not_save_grid = True
if opts.img2img_color_correction:
p.color_corrections = initial_color_corrections
processed = processing.process_images(p)
if processed is None:
log.error("Loopback: processing output is none")
return Processed(p, [], None, None)
if state.interrupted or state.skipped:
break
if initial_seed is None:
initial_seed = processed.seed
initial_info = processed.info
if randomize_seed:
p.seed = random.randrange(4294967294)
p.all_seeds = [p.seed]
p.seed = processed.seed + 1 # why?
p.denoising_strength = calculate_denoising_strength(i + 1)
last_image = processed.images[0]
p.init_images = [last_image]
log.info(f'Loopback: iteration={i} seed={p.seed} curve={denoising_curve} strength={p.denoising_strength}:{final_denoising_strength}')
if initial_batch_count == 1:
history.append(last_image)
all_images.append(last_image)
if (initial_batch_count > 1) and (not state.skipped) and (not state.interrupted):
history.append(last_image)
all_images.append(last_image)
p.inpainting_fill = original_inpainting_fill
if state.interrupted:
break
if len(history) > 1:
grid = images.image_grid(history, rows=1)
if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, grid=True, p=p)
if opts.return_grid:
grids.append(grid)
all_images = grids + all_images
processed = Processed(p, all_images, initial_seed, initial_info)
return processed