import torch.nn as nn import torch import cv2 import numpy as np import einops from tqdm import tqdm from typing import Optional, Tuple, Union from diffusers import AutoencoderKL from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.modeling_utils import ModelMixin from diffusers.models.autoencoders.vae import DecoderOutput from diffusers.models.attention_processor import Attention, AttnProcessor try: from diffusers.models.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block except Exception: from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module class LatentTransparencyOffsetEncoder(torch.nn.Module): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.blocks = torch.nn.Sequential( torch.nn.Conv2d(4, 32, kernel_size=3, padding=1, stride=1), nn.SiLU(), torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1), nn.SiLU(), torch.nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2), nn.SiLU(), torch.nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1), nn.SiLU(), torch.nn.Conv2d(64, 128, kernel_size=3, padding=1, stride=2), nn.SiLU(), torch.nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1), nn.SiLU(), torch.nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2), nn.SiLU(), torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1), nn.SiLU(), zero_module(torch.nn.Conv2d(256, 4, kernel_size=3, padding=1, stride=1)), ) def __call__(self, x): return self.blocks(x) # 1024 * 1024 * 3 -> 16 * 16 * 512 -> 1024 * 1024 * 3 class UNet1024(ModelMixin, ConfigMixin): @register_to_config def __init__( self, in_channels: int = 3, out_channels: int = 3, down_block_types: Tuple[str] = ("DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"), up_block_types: Tuple[str] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D"), block_out_channels: Tuple[int] = (32, 32, 64, 128, 256, 512, 512), layers_per_block: int = 2, mid_block_scale_factor: float = 1, downsample_padding: int = 1, downsample_type: str = "conv", upsample_type: str = "conv", dropout: float = 0.0, act_fn: str = "silu", attention_head_dim: Optional[int] = 8, norm_num_groups: int = 4, norm_eps: float = 1e-5, ): super().__init__() # input self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)) self.latent_conv_in = zero_module(nn.Conv2d(4, block_out_channels[2], kernel_size=1)) self.down_blocks = nn.ModuleList([]) self.mid_block = None self.up_blocks = nn.ModuleList([]) # down output_channel = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 down_block = get_down_block( down_block_type, num_layers=layers_per_block, in_channels=input_channel, out_channels=output_channel, temb_channels=None, add_downsample=not is_final_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel, downsample_padding=downsample_padding, resnet_time_scale_shift="default", downsample_type=downsample_type, dropout=dropout, ) self.down_blocks.append(down_block) # mid self.mid_block = UNetMidBlock2D( in_channels=block_out_channels[-1], temb_channels=None, dropout=dropout, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, resnet_time_scale_shift="default", attention_head_dim=attention_head_dim if attention_head_dim is not None else block_out_channels[-1], resnet_groups=norm_num_groups, attn_groups=None, add_attention=True, ) # up reversed_block_out_channels = list(reversed(block_out_channels)) output_channel = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] is_final_block = i == len(block_out_channels) - 1 up_block = get_up_block( up_block_type, num_layers=layers_per_block + 1, in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=None, add_upsample=not is_final_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel, resnet_time_scale_shift="default", upsample_type=upsample_type, dropout=dropout, ) self.up_blocks.append(up_block) prev_output_channel = output_channel # out self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) self.conv_act = nn.SiLU() self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1) def forward(self, x, latent): sample_latent = self.latent_conv_in(latent) sample = self.conv_in(x) emb = None down_block_res_samples = (sample,) for i, downsample_block in enumerate(self.down_blocks): if i == 3: sample = sample + sample_latent sample, res_samples = downsample_block(hidden_states=sample, temb=emb) down_block_res_samples += res_samples sample = self.mid_block(sample, emb) for upsample_block in self.up_blocks: res_samples = down_block_res_samples[-len(upsample_block.resnets) :] down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] sample = upsample_block(sample, res_samples, emb) sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) return sample def checkerboard(shape): return np.indices(shape).sum(axis=0) % 2 class TransparentVAEDecoder(AutoencoderKL): @register_to_config def __init__( self, in_channels: int = 3, out_channels: int = 3, down_block_types: Tuple[str] = ("DownEncoderBlock2D",), up_block_types: Tuple[str] = ("UpDecoderBlock2D",), block_out_channels: Tuple[int] = (64,), layers_per_block: int = 1, act_fn: str = "silu", latent_channels: int = 4, norm_num_groups: int = 32, sample_size: int = 32, scaling_factor: float = 0.18215, latents_mean: Optional[Tuple[float]] = None, latents_std: Optional[Tuple[float]] = None, force_upcast: float = True, ): super().__init__(in_channels, out_channels, down_block_types, up_block_types, block_out_channels, layers_per_block, act_fn, latent_channels, norm_num_groups, sample_size, scaling_factor, latents_mean, latents_std, force_upcast) def set_transparent_decoder(self, sd, mod_number=1): model = UNet1024(in_channels=3, out_channels=4) model.load_state_dict(sd, strict=True) model.to(device=self.device, dtype=self.dtype) model.eval() self.transparent_decoder = model self.mod_number = mod_number def estimate_single_pass(self, pixel, latent): y = self.transparent_decoder(pixel, latent) return y def estimate_augmented(self, pixel, latent): args = [ [False, 0], [False, 1], [False, 2], [False, 3], [True, 0], [True, 1], [True, 2], [True, 3], ] result = [] for flip, rok in tqdm(args): feed_pixel = pixel.clone() feed_latent = latent.clone() if flip: feed_pixel = torch.flip(feed_pixel, dims=(3,)) feed_latent = torch.flip(feed_latent, dims=(3,)) feed_pixel = torch.rot90(feed_pixel, k=rok, dims=(2, 3)) feed_latent = torch.rot90(feed_latent, k=rok, dims=(2, 3)) eps = self.estimate_single_pass(feed_pixel, feed_latent).clip(0, 1) eps = torch.rot90(eps, k=-rok, dims=(2, 3)) if flip: eps = torch.flip(eps, dims=(3,)) result += [eps] result = torch.stack(result, dim=0) median = torch.median(result, dim=0).values return median def decode(self, z: torch.Tensor, return_dict: bool = True, generator=None) -> Union[DecoderOutput, torch.Tensor]: pixel = super().decode(z, return_dict=False, generator=generator)[0] pixel = pixel / 2 + 0.5 result_pixel = [] for i in range(int(z.shape[0])): if self.mod_number != 1 and i % self.mod_number != 0: img = torch.cat((pixel[i:i+1], torch.ones_like(pixel[i:i+1,:1,:,:])), dim=1) result_pixel.append(img) continue y = self.estimate_augmented(pixel[i:i+1], z[i:i+1]) y = y.clip(0, 1).movedim(1, -1) alpha = y[..., :1] fg = y[..., 1:] _B, H, W, _C = fg.shape cb = checkerboard(shape=(H // 64, W // 64)) cb = cv2.resize(cb, (W, H), interpolation=cv2.INTER_LANCZOS4) cb = (0.5 + (cb - 0.5) * 0.1)[None, ..., None] cb = torch.from_numpy(cb).to(fg) png = torch.cat([fg, alpha], dim=3) png = png.permute(0, 3, 1, 2) result_pixel.append(png) result_pixel = torch.cat(result_pixel, dim=0) result_pixel = (result_pixel - 0.5) * 2 if not return_dict: return (result_pixel, ) return DecoderOutput(sample=result_pixel) class TransparentVAEEncoder: def __init__(self, sd, device="cpu", torch_dtype=torch.float32): self.load_device = device self.dtype = torch_dtype model = LatentTransparencyOffsetEncoder() model.load_state_dict(sd, strict=True) model.to(device=self.offload_device, dtype=self.dtype) model.eval() class HookerLayers(torch.nn.Module): def __init__(self, layer_list): super().__init__() self.layers = torch.nn.ModuleList(layer_list) class AdditionalAttentionCondsEncoder(torch.nn.Module): def __init__(self): super().__init__() self.blocks_0 = torch.nn.Sequential( torch.nn.Conv2d(3, 32, kernel_size=3, padding=1, stride=1), torch.nn.SiLU(), torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1), torch.nn.SiLU(), torch.nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2), torch.nn.SiLU(), torch.nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1), torch.nn.SiLU(), torch.nn.Conv2d(64, 128, kernel_size=3, padding=1, stride=2), torch.nn.SiLU(), torch.nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1), torch.nn.SiLU(), torch.nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2), torch.nn.SiLU(), torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1), torch.nn.SiLU(), ) # 64*64*256 self.blocks_1 = torch.nn.Sequential( torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=2), torch.nn.SiLU(), torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1), torch.nn.SiLU(), ) # 32*32*256 self.blocks_2 = torch.nn.Sequential( torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=2), torch.nn.SiLU(), torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1), torch.nn.SiLU(), ) # 16*16*256 self.blocks_3 = torch.nn.Sequential( torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=2), torch.nn.SiLU(), torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1), torch.nn.SiLU(), ) # 8*8*256 self.blks = [self.blocks_0, self.blocks_1, self.blocks_2, self.blocks_3] def __call__(self, h): results = {} for b in self.blks: h = b(h) results[int(h.shape[2]) * int(h.shape[3])] = h return results class LoraLoader(torch.nn.Module): def __init__(self, layer_list, use_control=False): super().__init__() self.hookers = HookerLayers(layer_list) if use_control: self.kwargs_encoder = AdditionalAttentionCondsEncoder() else: self.kwargs_encoder = None class LoRALinearLayer(torch.nn.Module): def __init__(self, in_features: int, out_features: int, rank: int = 256): super().__init__() self.down = torch.nn.Linear(in_features, rank, bias=False) self.up = torch.nn.Linear(rank, out_features, bias=False) def forward(self, h, org): org_weight = org.weight.to(h) org_bias = org.bias.to(h) if org.bias is not None else None down_weight = self.down.weight up_weight = self.up.weight final_weight = org_weight + torch.mm(up_weight, down_weight) return torch.nn.functional.linear(h, final_weight, org_bias) class AttentionSharingProcessor(nn.Module): def __init__(self, module, frames=2, use_control=True, rank=256): super().__init__() self.heads = module.heads self.frames = frames self.original_module = [module] q_in_channels, q_out_channels = module.to_q.in_features, module.to_q.out_features k_in_channels, k_out_channels = module.to_k.in_features, module.to_k.out_features v_in_channels, v_out_channels = module.to_v.in_features, module.to_v.out_features o_in_channels, o_out_channels = module.to_out[0].in_features, module.to_out[0].out_features hidden_size = k_out_channels self.to_q_lora = [LoRALinearLayer(q_in_channels, q_out_channels, rank) for _ in range(self.frames)] self.to_k_lora = [LoRALinearLayer(k_in_channels, k_out_channels, rank) for _ in range(self.frames)] self.to_v_lora = [LoRALinearLayer(v_in_channels, v_out_channels, rank) for _ in range(self.frames)] self.to_out_lora = [LoRALinearLayer(o_in_channels, o_out_channels, rank) for _ in range(self.frames)] self.to_q_lora = torch.nn.ModuleList(self.to_q_lora) self.to_k_lora = torch.nn.ModuleList(self.to_k_lora) self.to_v_lora = torch.nn.ModuleList(self.to_v_lora) self.to_out_lora = torch.nn.ModuleList(self.to_out_lora) self.temporal_i = torch.nn.Linear(in_features=hidden_size, out_features=hidden_size) self.temporal_n = torch.nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6) self.temporal_q = torch.nn.Linear(in_features=hidden_size, out_features=hidden_size) self.temporal_k = torch.nn.Linear(in_features=hidden_size, out_features=hidden_size) self.temporal_v = torch.nn.Linear(in_features=hidden_size, out_features=hidden_size) self.temporal_o = torch.nn.Linear(in_features=hidden_size, out_features=hidden_size) self.control_convs = None if use_control: self.control_convs = [torch.nn.Sequential( torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1), torch.nn.SiLU(), torch.nn.Conv2d(256, hidden_size, kernel_size=1), ) for _ in range(self.frames)] self.control_convs = torch.nn.ModuleList(self.control_convs) self.control_signals = None self.processor = AttnProcessor() def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) modified_hidden_states = einops.rearrange(hidden_states, '(b f) d c -> f b d c', f=self.frames) if self.control_convs is not None: context_dim = int(modified_hidden_states.shape[2]) control_outs = [] for f in range(self.frames): control_signal = self.control_signals[context_dim].to(modified_hidden_states) control = self.control_convs[f](control_signal) control = einops.rearrange(control, 'b c h w -> b (h w) c') control_outs.append(control) control_outs = torch.stack(control_outs, dim=0) modified_hidden_states = modified_hidden_states + control_outs.to(modified_hidden_states) if encoder_hidden_states is None: framed_context = modified_hidden_states else: framed_context = einops.rearrange(encoder_hidden_states, '(b f) d c -> f b d c', f=self.frames) attn_outs = [] for f in range(self.frames): fcf = framed_context[f] if encoder_hidden_states is not None: framed_cond_mark = einops.rearrange(torch.ones(batch_size*self.frames), '(b f) -> f b', f=self.frames).to(modified_hidden_states) cond_overwrite = [] if len(cond_overwrite) > f: cond_overwrite = cond_overwrite[f] else: cond_overwrite = None if cond_overwrite is not None: cond_mark = framed_cond_mark[f][:, None, None] fcf = cond_overwrite.to(fcf) * (1.0 - cond_mark) + fcf * cond_mark query = self.to_q_lora[f](modified_hidden_states[f], attn.to_q) key = self.to_k_lora[f](fcf, attn.to_k) value = self.to_v_lora[f](fcf, attn.to_v) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) output = torch.bmm(attention_probs, value) output = attn.batch_to_head_dim(output) output = self.to_out_lora[f](output, attn.to_out[0]) output = attn.to_out[1](output) attn_outs.append(output) attn_outs = torch.stack(attn_outs, dim=0) modified_hidden_states = modified_hidden_states + attn_outs.to(modified_hidden_states) modified_hidden_states = einops.rearrange(modified_hidden_states, 'f b d c -> (b f) d c', f=self.frames) x = modified_hidden_states x = self.temporal_n(x) x = self.temporal_i(x) d = x.shape[1] x = einops.rearrange(x, "(b f) d c -> (b d) f c", f=self.frames) query = self.temporal_q(x) key = self.temporal_k(x) value = self.temporal_v(x) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) x = torch.bmm(attention_probs, value) x = attn.batch_to_head_dim(x) x = self.temporal_o(x) x = einops.rearrange(x, "(b d) f c -> (b f) d c", d=d) modified_hidden_states = modified_hidden_states + x return modified_hidden_states - hidden_states