import os import torch from torch import nn from modules import devices, paths, shared sd_vae_approx_model = None class VAEApprox(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(4, 8, (7, 7)) self.conv2 = nn.Conv2d(8, 16, (5, 5)) self.conv3 = nn.Conv2d(16, 32, (3, 3)) self.conv4 = nn.Conv2d(32, 64, (3, 3)) self.conv5 = nn.Conv2d(64, 32, (3, 3)) self.conv6 = nn.Conv2d(32, 16, (3, 3)) self.conv7 = nn.Conv2d(16, 8, (3, 3)) self.conv8 = nn.Conv2d(8, 3, (3, 3)) def forward(self, x): extra = 11 try: x = nn.functional.interpolate(x, (x.shape[2] * 2, x.shape[3] * 2)) x = nn.functional.pad(x, (extra, extra, extra, extra)) # pylint: disable=not-callable for layer in [self.conv1, self.conv2, self.conv3, self.conv4, self.conv5, self.conv6, self.conv7, self.conv8, ]: x = layer(x) x = nn.functional.leaky_relu(x, 0.1) except Exception: pass return x def nn_approximation(sample): # Approximate NN global sd_vae_approx_model # pylint: disable=global-statement # ROCm throws memory exceptions and crashes the GPU with it if we use approx on the GPU device = devices.device if devices.backend != "rocm" else "cpu" dtype = devices.dtype_vae if devices.backend != "rocm" else torch.float32 if sd_vae_approx_model is None: model_path = os.path.join(paths.models_path, "VAE-approx", "model.pt") sd_vae_approx_model = VAEApprox() if not os.path.exists(model_path): model_path = os.path.join(paths.script_path, "models", "VAE-approx", "model.pt") approx_weights = torch.load(model_path, map_location='cpu' if devices.device.type != 'cuda' or devices.backend == "rocm" else None) sd_vae_approx_model.load_state_dict(approx_weights) sd_vae_approx_model.eval() sd_vae_approx_model.to(device, dtype) shared.log.debug(f'VAE load: type=approximate model="{model_path}"') try: in_sample = sample.to(device, dtype).unsqueeze(0) sd_vae_approx_model.to(device, dtype) x_sample = sd_vae_approx_model(in_sample) x_sample = x_sample[0].to(torch.float32).detach().cpu() return x_sample except Exception as e: shared.log.error(f'VAE decode approximate: {e}') return sample def cheap_approximation(sample): # Approximate simple # https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/2 if shared.sd_model_type == "sdxl": simple_weights = torch.tensor([ [0.4543,-0.2868, 0.1566,-0.4748], [0.5008, 0.0952, 0.2155,-0.3268], [0.5294, 0.1625,-0.0624,-0.3793] ]).reshape(3, 4, 1, 1) simple_bias = torch.tensor([0.1375, 0.0144, -0.0675]) else: simple_weights = torch.tensor([ [0.298, 0.187,-0.158,-0.184], [0.207, 0.286, 0.189,-0.271], [0.208, 0.173, 0.264,-0.473], ]).reshape(3, 4, 1, 1) simple_bias = None try: weights = simple_weights.to(sample.device, sample.dtype) bias = simple_bias.to(sample.device, sample.dtype) if simple_bias is not None else None x_sample = nn.functional.conv2d(sample, weights, bias) # pylint: disable=not-callable return x_sample except Exception as e: shared.log.error(f'VAE decode simple: {e}') return sample