import os import glob import torch from modules import shared, errors, paths, devices, sd_models, sd_detect vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} vae_dict = {} base_vae = None loaded_vae_file = None checkpoint_info = None vae_path = os.path.abspath(os.path.join(paths.models_path, 'VAE')) debug = os.environ.get('SD_VAE_DEBUG', None) is not None unspecified = object() vae_scale_override = { 'WanPipeline': 16, 'ChronoEditPipeline': 16, } def get_vae_scale_factor(model=None): if not shared.sd_loaded: vae_scale_factor = 8 return vae_scale_factor patch_size = 1 if model is None: model = shared.sd_model if model is None: vae_scale_factor = 8 elif model.__class__.__name__ in vae_scale_override: vae_scale_factor = vae_scale_override[model.__class__.__name__] elif hasattr(model, 'vae_scale_factor_spatial'): vae_scale_factor = model.vae_scale_factor_spatial elif hasattr(model, 'vae_scale_factor'): vae_scale_factor = model.vae_scale_factor elif hasattr(model, 'pipe') and hasattr(model.pipe, 'vae_scale_factor'): vae_scale_factor = model.pipe.vae_scale_factor elif hasattr(model, 'config') and hasattr(model.config, 'vae_scale_factor'): vae_scale_factor = model.config.vae_scale_factor else: # shared.log.warning(f'VAE: cls={model.__class__.__name__ if model else "None"} scale=unknown') vae_scale_factor = 8 if hasattr(model, 'patch_size'): patch_size = model.patch_size if debug: shared.log.trace(f'VAE: cls={model.__class__.__name__ if model else "None"} scale={vae_scale_factor} patch={patch_size}') return vae_scale_factor * patch_size def load_vae_dict(filename): vae_ckpt = sd_models.read_state_dict(filename, what='vae') vae_dict_1 = {k: v for k, v in vae_ckpt.items() if k[0:4] != "loss" and k not in vae_ignore_keys} return vae_dict_1 def get_filename(filepath): if filepath.endswith(".json"): return os.path.basename(os.path.dirname(filepath)) else: return os.path.basename(filepath) def refresh_vae_list(): global vae_path # pylint: disable=global-statement vae_path = shared.opts.vae_dir vae_dict.clear() vae_paths = [] if sd_models.model_path is not None and os.path.isdir(sd_models.model_path): vae_paths += [os.path.join(sd_models.model_path, 'VAE', '**/*.vae.safetensors')] if shared.opts.ckpt_dir is not None and os.path.isdir(shared.opts.ckpt_dir): vae_paths += [os.path.join(shared.opts.ckpt_dir, '**/*.vae.safetensors')] if shared.opts.vae_dir is not None and os.path.isdir(shared.opts.vae_dir): vae_paths += [os.path.join(shared.opts.vae_dir, '**/*.safetensors')] vae_paths += [ os.path.join(sd_models.model_path, 'VAE', '**/*.json'), os.path.join(shared.opts.vae_dir, '**/*.json'), ] candidates = [] for path in vae_paths: candidates += glob.iglob(path, recursive=True) candidates = [os.path.abspath(path) for path in candidates] for filepath in candidates: name = get_filename(filepath) if name == 'VAE': continue if filepath.endswith(".json"): vae_dict[name] = os.path.dirname(filepath) else: vae_dict[name] = filepath shared.log.info(f'Available VAEs: path="{vae_path}" items={len(vae_dict)}') return vae_dict def find_vae_near_checkpoint(checkpoint_file): checkpoint_path = os.path.splitext(checkpoint_file)[0] for vae_location in [f"{checkpoint_path}.vae.pt", f"{checkpoint_path}.vae.ckpt", f"{checkpoint_path}.vae.safetensors"]: if os.path.isfile(vae_location): return vae_location return None def resolve_vae(checkpoint_file): if shared.opts.sd_vae == 'TAESD': return None, None if shared.cmd_opts.vae is not None: # 1st return shared.cmd_opts.vae, 'forced' if shared.opts.sd_vae == "Default": # 2nd return None, None vae_near_checkpoint = find_vae_near_checkpoint(checkpoint_file) if vae_near_checkpoint is not None: # 3rd return vae_near_checkpoint, 'near-checkpoint' if shared.opts.sd_vae == "Automatic": # 4th basename = os.path.splitext(os.path.basename(checkpoint_file))[0] if vae_dict.get(basename, None) is not None: return vae_dict[basename], 'automatic' else: vae_from_options = vae_dict.get(shared.opts.sd_vae, None) # 5th if vae_from_options is not None: return vae_from_options, 'settings' vae_from_options = vae_dict.get(shared.opts.sd_vae + '.safetensors', None) # 6th if vae_from_options is not None: return vae_from_options, 'settings' shared.log.warning(f"VAE not found: {shared.opts.sd_vae}") return None, None def apply_vae_config(model_file, vae_file, sd_model): def get_vae_config(): config_file = os.path.join(paths.sd_configs_path, os.path.splitext(os.path.basename(model_file))[0] + '_vae.json') if config_file is not None and os.path.exists(config_file): return shared.readfile(config_file, as_type="dict") config_file = os.path.join(paths.sd_configs_path, os.path.splitext(os.path.basename(vae_file))[0] + '.json') if vae_file else None if config_file is not None and os.path.exists(config_file): return shared.readfile(config_file, as_type="dict") config_file = os.path.join(paths.sd_configs_path, shared.sd_model_type, 'vae', 'config.json') if config_file is not None and os.path.exists(config_file): return shared.readfile(config_file, as_type="dict") return {} if hasattr(sd_model, 'vae') and hasattr(sd_model.vae, 'config'): config = get_vae_config() for k, v in config.items(): if k in sd_model.vae.config and not k.startswith('_'): sd_model.vae.config[k] = v def load_vae_diffusers(model_file, vae_file=None, vae_source="unknown-source"): if vae_file is None: return None if not os.path.exists(vae_file): shared.log.error(f'VAE not found: model{vae_file}') return None diffusers_load_config = { "low_cpu_mem_usage": False, "torch_dtype": devices.dtype_vae, "use_safetensors": True, } if shared.opts.diffusers_vae_load_variant == 'default': if devices.dtype_vae == torch.float16: diffusers_load_config['variant'] = 'fp16' elif shared.opts.diffusers_vae_load_variant == 'fp32': pass else: diffusers_load_config['variant'] = shared.opts.diffusers_vae_load_variant if shared.opts.diffusers_vae_upcast != 'default': diffusers_load_config['force_upcast'] = True if shared.opts.diffusers_vae_upcast == 'true' else False _pipeline, model_type = sd_detect.detect_pipeline(model_file, 'vae') vae_config = sd_detect.get_load_config(model_file, model_type, config_type='json') if vae_config is not None: diffusers_load_config['config'] = os.path.join(vae_config, 'vae') shared.log.info(f'Load module: type=VAE model="{vae_file}" source={vae_source} config={diffusers_load_config}') try: import diffusers if os.path.isfile(vae_file): if os.path.getsize(vae_file) > 1310944880: # 1.3GB vae = diffusers.ConsistencyDecoderVAE.from_pretrained('openai/consistency-decoder', **diffusers_load_config) # consistency decoder does not have from single file, so we'll just download it once more elif os.path.getsize(vae_file) < 10000000: # 10MB vae = diffusers.AutoencoderTiny.from_single_file(vae_file, **diffusers_load_config) else: vae = diffusers.AutoencoderKL.from_single_file(vae_file, **diffusers_load_config) if getattr(vae.config, 'scaling_factor', 0) == 0.18125 and shared.sd_model_type == 'sdxl': vae.config.scaling_factor = 0.13025 shared.log.debug('Setting model: component=VAE fix scaling factor') vae = vae.to(devices.dtype_vae) else: if 'consistency-decoder' in vae_file: vae = diffusers.ConsistencyDecoderVAE.from_pretrained(vae_file, **diffusers_load_config) else: vae = diffusers.AutoencoderKL.from_pretrained(vae_file, **diffusers_load_config) global loaded_vae_file # pylint: disable=global-statement loaded_vae_file = os.path.basename(vae_file) # shared.log.debug(f'Diffusers VAE config: {vae.config}') if shared.opts.diffusers_offload_mode == 'none': sd_models.move_model(vae, devices.device) return vae except Exception as e: shared.log.error(f"Load VAE failed: model={vae_file} {e}") if debug: errors.display(e, 'VAE') return None def reload_vae_weights(sd_model=None, vae_file=unspecified): if not sd_model: sd_model = shared.sd_model if sd_model is None: return None global checkpoint_info # pylint: disable=global-statement checkpoint_info = sd_model.sd_checkpoint_info checkpoint_file = checkpoint_info.filename if vae_file == unspecified: vae_file, vae_source = resolve_vae(checkpoint_file) else: vae_source = "function-argument" if vae_file is None or vae_file == 'None': if hasattr(sd_model, 'original_vae'): sd_models.set_diffuser_options(sd_model, vae=sd_model.original_vae, op='vae') shared.log.info("VAE restored") return None if loaded_vae_file == vae_file: return None if hasattr(sd_model, "vae") and getattr(sd_model, "sd_checkpoint_info", None) is not None: vae = load_vae_diffusers(sd_model.sd_checkpoint_info.filename, vae_file, vae_source) if vae is not None: if not hasattr(sd_model, 'original_vae'): sd_model.original_vae = sd_model.vae sd_models.move_model(sd_model.original_vae, devices.cpu) sd_models.set_diffuser_options(sd_model, vae=vae, op='vae') apply_vae_config(sd_model.sd_checkpoint_info.filename, vae_file, sd_model) if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: sd_models.move_model(sd_model, devices.device) return sd_model