import os import time import gradio as gr from installer import log, install from modules.shared import opts # initialize huggingface environment def hf_init(): os.environ.setdefault('HF_HUB_DISABLE_EXPERIMENTAL_WARNING', '1') os.environ.setdefault('HF_HUB_DISABLE_EXPERIMENTAL_WARNING', '1') os.environ.setdefault('HF_HUB_DISABLE_IMPLICIT_TOKEN', '1') os.environ.setdefault('HF_HUB_DISABLE_SYMLINKS_WARNING', '1') os.environ.setdefault('HF_HUB_DISABLE_TELEMETRY', '1') os.environ.setdefault('HF_HUB_VERBOSITY', 'warning') os.environ.setdefault('HF_HUB_DOWNLOAD_TIMEOUT', '60') os.environ.setdefault('HF_HUB_ETAG_TIMEOUT', '10') os.environ.setdefault('HF_ENABLE_PARALLEL_LOADING', 'true' if opts.sd_parallel_load else 'false') os.environ.setdefault('HF_HUB_CACHE', opts.hfcache_dir) if opts.hf_transfer_mode == 'requests': os.environ.setdefault('HF_XET_HIGH_PERFORMANCE', 'false') os.environ.setdefault('HF_HUB_ENABLE_HF_TRANSFER', 'false') os.environ.setdefault('HF_HUB_DISABLE_XET', 'true') elif opts.hf_transfer_mode == 'rust': install('hf_transfer') import huggingface_hub huggingface_hub.utils._runtime.is_hf_transfer_available = lambda: True # pylint: disable=protected-access os.environ.setdefault('HF_XET_HIGH_PERFORMANCE', 'false') os.environ.setdefault('HF_HUB_ENABLE_HF_TRANSFER', 'true') os.environ.setdefault('HF_HUB_DISABLE_XET', 'true') elif opts.hf_transfer_mode == 'xet': install('hf_xet') import huggingface_hub huggingface_hub.utils._runtime.is_xet_available = lambda: True # pylint: disable=protected-access os.environ.setdefault('HF_XET_HIGH_PERFORMANCE', 'true') os.environ.setdefault('HF_HUB_ENABLE_HF_TRANSFER', 'true') os.environ.setdefault('HF_HUB_DISABLE_XET', 'false') obfuscated_token = None if len(opts.huggingface_token) > 0 and opts.huggingface_token.startswith('hf_'): obfuscated_token = 'hf_...' + opts.huggingface_token[-4:] log.info(f'Huggingface: transfer={opts.hf_transfer_mode} parallel={opts.sd_parallel_load} direct={opts.diffusers_to_gpu} token="{obfuscated_token}" cache="{opts.hfcache_dir}" init') def hf_check_cache(): prev_default = os.environ.get("SD_HFCACHEDIR", None) or os.path.join(os.path.expanduser('~'), '.cache', 'huggingface', 'hub') from modules.modelstats import stat if opts.hfcache_dir != prev_default: size, _mtime = stat(prev_default) if size//1024//1024 > 0: log.warning(f'Cache location changed: previous="{prev_default}" size={size//1024//1024} MB') size, _mtime = stat(opts.hfcache_dir) log.debug(f'Huggingface: cache="{opts.hfcache_dir}" size={size//1024//1024} MB') def hf_search(keyword): import huggingface_hub as hf t0 = time.time() hf_api = hf.HfApi() models = hf_api.list_models(model_name=keyword, full=True, library="diffusers", limit=50, sort="downloads", direction=-1) data = [] for model in models: tags = [t for t in model.tags if not t.startswith('diffusers') and not t.startswith('license') and not t.startswith('arxiv') and len(t) > 2] data.append([model.id, model.pipeline_tag, tags, model.downloads, model.lastModified, f'https://huggingface.co/{model.id}']) log.debug(f'Huggingface: search="{keyword}" results={len(data)} time={time.time()-t0:.2f}') return data def hf_select(evt: gr.SelectData, df): row = list(df.iloc[evt.index[0]]) log.debug(f'Huggingface: selected={row} index={evt.index}') return row[0] # repo_id only def hf_download_model(hub_id: str, token, variant, revision, mirror, custom_pipeline): from modules.modelloader import download_diffusers_model download_diffusers_model(hub_id, cache_dir=opts.diffusers_dir, token=token, variant=variant, revision=revision, mirror=mirror, custom_pipeline=custom_pipeline) from modules.sd_models import list_models # pylint: disable=W0621 list_models() log.info(f'Huggingface: model="{hub_id}" downloaded') return f'Diffuser model downloaded: model="{hub_id}"' def hf_update_token(token): log.debug('Huggingface: update token') opts.huggingface_token = token opts.save()