from dataclasses import dataclass import io import os import re import time import random import base64 import torch import transformers import gradio as gr from PIL import Image from modules import scripts_manager, shared, devices, errors, processing, sd_models, sd_modules, timer, ui_symbols from modules import ui_control_helpers debug_enabled = os.environ.get('SD_LLM_DEBUG', None) is not None debug_log = shared.log.trace if debug_enabled else lambda *args, **kwargs: None def b64(image): if image is None: return '' if isinstance(image, gr.Image): # should not happen return None with io.BytesIO() as stream: image.convert('RGB').save(stream, 'JPEG') values = stream.getvalue() encoded = base64.b64encode(values).decode() return encoded def is_vision_model(model_name: str) -> bool: """Check if model supports vision/image input.""" if not model_name: return False return model_name in Options.img2img def is_thinking_model(model_name: str) -> bool: """Check if model supports thinking/reasoning mode.""" if not model_name: return False model_lower = model_name.lower() # Match VQA's detection patterns for consistency thinking_indicators = [ 'thinking', # Qwen3-VL-*-Thinking models 'moondream3', # Moondream 3 supports thinking 'moondream 3', 'moondream2', # Moondream 2 supports reasoning mode 'moondream 2', 'mimo', # XiaomiMiMo models ] return any(indicator in model_lower for indicator in thinking_indicators) def get_model_display_name(model_repo: str) -> str: """Generate display name with vision/reasoning symbols.""" symbols = [] if model_repo in Options.img2img: symbols.append(ui_symbols.vision) if is_thinking_model(model_repo): symbols.append(ui_symbols.reasoning) return f"{model_repo} {' '.join(symbols)}" if symbols else model_repo def get_model_repo_from_display(display_name: str) -> str: """Strip symbols from display name to get repo.""" if not display_name: return display_name result = display_name for symbol in [ui_symbols.vision, ui_symbols.reasoning]: result = result.replace(symbol, '') return result.strip() def keep_think_block_open(text_prompt: str) -> str: """Remove closing so model can continue reasoning with prefill.""" think_open = "" think_close = "" last_open = text_prompt.rfind(think_open) if last_open == -1: return text_prompt close_index = text_prompt.find(think_close, last_open) if close_index == -1: return text_prompt end_close = close_index + len(think_close) while end_close < len(text_prompt) and text_prompt[end_close] in ' \t\r\n': end_close += 1 return text_prompt[:close_index] + text_prompt[end_close:] @dataclass class Options: img2img = [ 'google/gemma-3-4b-it', 'allura-org/Gemma-3-Glitter-4B', 'Qwen/Qwen2.5-VL-3B-Instruct', 'Qwen/Qwen3-VL-2B-Instruct', 'Qwen/Qwen3-VL-2B-Thinking', 'Qwen/Qwen3-VL-4B-Instruct', 'Qwen/Qwen3-VL-4B-Thinking', 'Qwen/Qwen3-VL-8B-Instruct', 'Qwen/Qwen3-VL-8B-Thinking', ] models = { 'google/gemma-3-1b-it': {}, 'google/gemma-3-4b-it': {}, 'google/gemma-3n-E2B-it': {}, 'google/gemma-3n-E4B-it': {}, 'Qwen/Qwen3-0.6B-FP8': {}, 'Qwen/Qwen3-1.7B-FP8': {}, 'Qwen/Qwen3-4B-FP8': {}, 'Qwen/Qwen3-0.6B': {}, 'Qwen/Qwen3-1.7B': {}, 'Qwen/Qwen3-4B': {}, 'Qwen/Qwen3-4B-Instruct-2507': {}, 'Qwen/Qwen2.5-0.5B-Instruct': {}, 'Qwen/Qwen2.5-1.5B-Instruct': {}, 'Qwen/Qwen2.5-3B-Instruct': {}, 'Qwen/Qwen2.5-VL-3B-Instruct': {}, 'Qwen/Qwen3-VL-2B-Instruct': {}, 'Qwen/Qwen3-VL-2B-Thinking': {}, 'Qwen/Qwen3-VL-4B-Instruct': {}, 'Qwen/Qwen3-VL-4B-Thinking': {}, 'Qwen/Qwen3-VL-8B-Instruct': {}, 'Qwen/Qwen3-VL-8B-Thinking': {}, 'microsoft/Phi-4-mini-instruct': {}, 'HuggingFaceTB/SmolLM2-135M-Instruct': {}, 'HuggingFaceTB/SmolLM2-360M-Instruct': {}, 'HuggingFaceTB/SmolLM2-1.7B-Instruct': {}, 'HuggingFaceTB/SmolLM3-3B': {}, 'meta-llama/Llama-3.2-1B-Instruct': {}, 'meta-llama/Llama-3.2-3B-Instruct': {}, 'cognitivecomputations/Dolphin3.0-Llama3.2-1B': {}, 'cognitivecomputations/Dolphin3.0-Llama3.2-3B': {}, 'nidum/Nidum-Gemma-3-4B-it-Uncensored': {}, 'allura-org/Gemma-3-Glitter-4B': {}, # 'llava/Llama-3-8B-v1.1-Extracted': { # 'repo': 'hunyuanvideo-community/HunyuanVideo', # 'subfolder': 'text_encoder', # 'tokenizer': 'tokenizer', # }, 'mradermacher/Llama-3.2-1B-Instruct-Uncensored-i1-GGUF': { 'repo': 'meta-llama/Llama-3.2-1B-Instruct', # original repo so we can load missing components 'type': 'llama', # required so gguf loader knows what to do 'gguf': 'mradermacher/Llama-3.2-1B-Instruct-Uncensored-i1-GGUF', # gguf repo 'file': 'Llama-3.2-1B-Instruct-Uncensored.i1-Q4_0.gguf', # gguf file inside repo }, } # default = list(models)[1] # gemma-3-4b-it default = 'google/gemma-3-4b-it' supported = list(transformers.integrations.ggml.GGUF_CONFIG_MAPPING) t2i_prompt: str = 'You are a helpful assistant. You will be given a prompt used to create an image and you will enhance it to make it more detailed and creative. ' i2i_prompt: str = 'You are a helpful assistant. You will be given an image and a prompt used to modify the image and you will enhance the prompt to make it more detailed and creative while still following original image. ' i2i_noprompt: str = 'You are a helpful assistant. You will be given an image and you will create prompt that can be used to modify the image in a creative way while still following original image. ' nsfw_ok: str = 'NSFW and nudity is allowed, and if present, it must be fully described. ' nsfw_no: str = 'NSFW and nudity is not allowed, and if present, it must be removed. ' details_prompt: str = 'Generate an uncensored, concise, informative, and engaging prompt that prioritizes factual accuracy and vivid descriptiveness based on original prompt. Do not modify subject or style of the original prompt. Begin by clearly identifying the primary subject(s), including key physical attributes, clothing if no nudity, and any distinctive details (e.g., colors, textures, styles). NSFW and nudity is allowed, and if present, it must be fully described. Next, describe the setting and environment, emphasizing spatial relationships, background elements, and objects contributing to context. Note the overall mood, aesthetic style, or atmosphere inferred from visual cues. Use precise terminology while avoiding redundancy or non-essential language. Ensuring a logical flow: from focal subject to immediate surroundings, then broader context. Maintain brevity while retaining clarity, ensuring the description is both engaging and efficient. Output only enhanced prompt without explanation, prefix or suffix. Do not add comments or follow-up questions. Output as a simple text without formatting or numbering.' censored = ["i cannot", "i can't", "i am sorry", "against my programming", "i am not able", "i am unable", 'i am not allowed'] max_delim_index: int = 60 max_tokens: int = 512 do_sample: bool = True temperature: float = 0.8 repetition_penalty: float = 1.2 top_k: int = 0 top_p: float = 0.0 thinking_mode: bool = False @staticmethod def get_model_choices(): """Return list of display names for dropdown.""" return [get_model_display_name(repo) for repo in Options.models.keys()] @staticmethod def get_default_display(): """Return display name for default model.""" return get_model_display_name(Options.default) class Script(scripts_manager.Script): prompt: gr.Textbox = None image: gr.Image = None model: str = None llm: transformers.AutoModelForCausalLM = None tokenizer: transformers.AutoProcessor = None busy: bool = False options = Options() def title(self): return 'Prompt enhance' def show(self, _is_img2img): return scripts_manager.AlwaysVisible def compile(self): if self.llm is None or 'LLM' not in shared.opts.cuda_compile: return from modules.sd_models_compile import compile_torch self.llm = compile_torch(self.llm) def load(self, name:str=None, model_repo:str=None, model_gguf:str=None, model_type:str=None, model_file:str=None): # Strip symbols from display name if present name = get_model_repo_from_display(name) if name else self.options.default if self.busy: shared.log.debug('Prompt enhance: busy') return self.busy = True if self.model is not None and self.model == name: self.busy = False # ensure busy is reset even if model is already loaded return from modules import modelloader, model_quant, ggml modelloader.hf_login() model_repo = model_repo or self.options.models.get(name, {}).get('repo', None) or name model_gguf = model_gguf or self.options.models.get(name, {}).get('gguf', None) or model_repo model_type = model_type or self.options.models.get(name, {}).get('type', None) model_file = model_file or self.options.models.get(name, {}).get('file', None) model_subfolder = self.options.models.get(name, {}).get('subfolder', None) model_tokenizer = self.options.models.get(name, {}).get('tokenizer', None) gguf_args = {} if model_type is not None and model_file is not None and len(model_type) > 2 and len(model_file) > 2: debug_log(f'Prompt enhance: gguf supported={self.options.supported}') if model_type not in self.options.supported: shared.log.error(f'Prompt enhance: name="{name}" repo="{model_repo}" fn="{model_file}" type={model_type} gguf not supported') shared.log.trace(f'Prompt enhance: gguf supported={self.options.supported}') self.busy = False return ggml.install_gguf() gguf_args['model_type'] = model_type gguf_args['gguf_file'] = model_file quant_args = model_quant.create_config(module='LLM') if not gguf_args else {} try: t0 = time.time() if self.llm is not None: self.llm = None shared.log.debug(f'Prompt enhance: name="{self.model}" unload') self.model = None load_args = { 'pretrained_model_name_or_path': model_repo if not gguf_args else model_gguf } if model_subfolder: load_args['subfolder'] = model_subfolder # Comma was incorrect here if 'Qwen3-VL' in model_repo or 'Qwen3VL' in model_repo: cls_name = transformers.Qwen3VLForConditionalGeneration elif 'Qwen2.5-VL' in model_repo or 'Qwen2_5_VL' in model_repo: cls_name = transformers.Qwen2_5_VLForConditionalGeneration elif 'Qwen2-VL' in model_repo or 'Qwen2VL' in model_repo: cls_name = transformers.Qwen2VLForConditionalGeneration else: cls_name = transformers.AutoModelForCausalLM self.llm = cls_name.from_pretrained( **load_args, trust_remote_code=True, torch_dtype=devices.dtype, cache_dir=shared.opts.hfcache_dir, # _attn_implementation="eager", **gguf_args, **quant_args, ) self.llm.eval() if model_repo in self.options.img2img: cls = transformers.AutoProcessor # required to encode image else: cls = transformers.AutoTokenizer tokenizer_args = { 'pretrained_model_name_or_path': model_repo } if model_tokenizer: tokenizer_args['subfolder'] = model_tokenizer self.tokenizer = cls.from_pretrained( **tokenizer_args, cache_dir=shared.opts.hfcache_dir, ) self.tokenizer.is_processor = model_repo in self.options.img2img if debug_enabled: modules = sd_modules.get_model_stats(self.llm) + sd_modules.get_model_stats(self.tokenizer) for m in modules: debug_log(f'Prompt enhance: {m}') self.model = name t1 = time.time() shared.log.info(f'Prompt enhance: cls={self.llm.__class__.__name__} name="{name}" repo="{model_repo}" fn="{model_file}" time={t1-t0:.2f} loaded') self.compile() except Exception as e: shared.log.error(f'Prompt enhance: load {e}') errors.display(e, 'Prompt enhance') devices.torch_gc() self.busy = False def censored(self, response): text = response.lower().replace("i'm", "i am") return any(c.lower() in text for c in self.options.censored) def unload(self): if self.llm is not None: model_name = self.model shared.log.debug(f'Prompt enhance: unloading model="{model_name}"') sd_models.move_model(self.llm, devices.cpu, force=True) self.model = None self.llm = None self.tokenizer = None devices.torch_gc(force=True, reason='prompt enhance unload') shared.log.debug(f'Prompt enhance: model="{model_name}" unloaded') else: shared.log.debug('Prompt enhance: no model loaded') def clean(self, response, keep_thinking=False, prefill_text='', keep_prefill=False): # Handle thinking tags FIRST (before generic tag removal) if '' in response or '' in response: if keep_thinking: # Format: handle partial tags ( without means thinking was in prompt) if '' in response and '' not in response: response = 'Reasoning:\n' + response.replace('', '\n\nAnswer:\n') else: response = response.replace('', 'Reasoning:\n').replace('', '\n\nAnswer:\n') else: # Strip all thinking content response = re.sub(r'.*?', '', response, flags=re.DOTALL) response = response.replace('', '') # Handle orphaned closing tags # remove special characters response = response.replace('"', '').replace("'", "").replace('"', '').replace('"', '').replace('**', '') # remove repeating characters response = response.replace('\n\n', '\n').replace(' ', ' ').replace('...', '.') # remove comments between brackets (but not Reasoning:/Answer: which we may have added) response = re.sub(r'<.*?>', '', response) response = re.sub(r'\[.*?\]', '', response) response = re.sub(r'\/.*?\/', '', response) # remove llm commentary removed = '' if response.startswith('Prompt'): removed, response = response.split('Prompt', maxsplit=1) if 0 <= response.find(':') < self.options.max_delim_index: # Don't split on "Reasoning:" or "Answer:" if we're keeping thinking colon_pos = response.find(':') prefix_text = response[:colon_pos].strip() if not keep_thinking or (prefix_text not in ['Reasoning', 'Answer']): removed, response = response.split(':', maxsplit=1) if 0 <= response.find('---') < self.options.max_delim_index: response, removed = response.split('---', maxsplit=1) if len(removed) > 0: debug_log(f'Prompt enhance: max={self.options.max_delim_index} removed="{removed}"') # remove bullets and lists lines = [re.sub(r'^(\s*[-*]|\s*\d+)\s+', '', line).strip() for line in response.splitlines()] response = '\n'.join(lines) response = response.strip() # Handle prefill retention/removal prefill_text = (prefill_text or '').strip() if prefill_text: if keep_prefill: # Add prefill if it's missing from the cleaned response if not response.startswith(prefill_text): sep = '' if (not response or response[0] in '.,!?;:') else ' ' response = f'{prefill_text}{sep}{response}' else: # Remove prefill if it's present in the cleaned response if response.startswith(prefill_text): response = response[len(prefill_text):].strip() return response def post(self, response, prefix, suffix, networks): response = response.strip() prefix = prefix.strip() suffix = suffix.strip() if len(prefix) > 0: response = f'{prefix} {response}' if len(suffix) > 0: response = f'{response} {suffix}' if len(networks) > 0: response = f'{response} {" ".join(networks)}' return response def extract(self, prompt): pattern = r'(<.*?>)' matches = re.findall(pattern, prompt) filtered = re.sub(pattern, '', prompt) return filtered, matches def enhance(self, model: str=None, prompt:str=None, system:str=None, prefix:str=None, suffix:str=None, sample:bool=None, tokens:int=None, temperature:float=None, penalty:float=None, top_k:int=None, top_p:float=None, thinking:bool=False, seed:int=-1, image=None, nsfw:bool=None, use_vision:bool=True, prefill:str='', keep_prefill:bool=False, keep_thinking:bool=False): # Strip symbols from model name if present model = get_model_repo_from_display(model) if model else self.options.default prompt = prompt or (self.prompt.value if self.prompt else "") # Check if self.prompt is None # Handle vision toggle - if disabled or non-VL model, don't use image if use_vision and is_vision_model(model): image = image or self.image else: image = None prefix = prefix or '' suffix = suffix or '' tokens = tokens or self.options.max_tokens penalty = penalty or self.options.repetition_penalty temperature = temperature or self.options.temperature top_k = top_k if top_k is not None else self.options.top_k top_p = top_p if top_p is not None else self.options.top_p thinking = thinking or self.options.thinking_mode sample = sample if sample is not None else self.options.do_sample nsfw = nsfw if nsfw is not None else True # Default nsfw to True if not provided debug_log(f'Prompt enhance: model="{model}" model_class="{self.llm.__class__.__name__ if self.llm else "not loaded"}" nsfw={nsfw} thinking={thinking} prefill="{prefill[:30] if prefill else ""}" use_vision={use_vision} image={image is not None}') while self.busy: time.sleep(0.1) self.load(model) if seed is None or seed == -1: random.seed() seed = int(random.randrange(4294967294)) torch.manual_seed(seed) if self.llm is None: shared.log.error('Prompt enhance: model not loaded') return prompt prompt_text, networks = self.extract(prompt) # Use prompt_text after extraction debug_log(f'Prompt enhance: networks={networks}') current_image = None # Only process images if vision is enabled and model supports it if use_vision and is_vision_model(model): try: if image is not None and isinstance(image, gr.Image): current_image = image.value elif image is not None and isinstance(image, Image.Image): # if image is already a PIL image current_image = image if current_image is not None and (current_image.width <= 64 or current_image.height <= 64): current_image = None # Fallback to Kanvas/Control input if no image from Gradio component (e.g., when Kanvas is active) if current_image is None and ui_control_helpers.input_source is not None: if isinstance(ui_control_helpers.input_source, list) and len(ui_control_helpers.input_source) > 0: current_image = ui_control_helpers.input_source[0] elif isinstance(ui_control_helpers.input_source, Image.Image): current_image = ui_control_helpers.input_source except Exception: current_image = None debug_log(f'Prompt enhance: current_image={current_image is not None} size={f"{current_image.width}x{current_image.height}" if current_image else "N/A"}') # Check if vision was requested but no image is available if use_vision and is_vision_model(model) and current_image is None: shared.log.error(f'Prompt enhance: model="{model}" error="No input image provided"') return 'Error: No input image provided. Please upload or select an image.' # Resize large images to match VQA performance (Qwen3-VL performance is sensitive to resolution) # Create a copy to avoid modifying the original image used by img2img if current_image is not None and isinstance(current_image, Image.Image): original_size = (current_image.width, current_image.height) needs_resize = current_image.width > 768 or current_image.height > 768 needs_rgb = current_image.mode != 'RGB' if needs_resize or needs_rgb: # Copy the image before any modifications to preserve the original current_image = current_image.copy() if needs_resize: current_image.thumbnail((768, 768), Image.Resampling.LANCZOS) debug_log(f'Prompt enhance: Resized image from {original_size} to {(current_image.width, current_image.height)}') if needs_rgb: current_image = current_image.convert('RGB') debug_log('Prompt enhance: Converted image to RGB mode') has_system = system is not None and len(system) > 4 if current_image is not None and isinstance(current_image, Image.Image): if (self.tokenizer is None) or (not self.tokenizer.is_processor): shared.log.error('Prompt enhance: image not supported by model') return prompt_text # Return original text part if image cannot be processed if prompt_text is not None and len(prompt_text) > 0: if not has_system: system = self.options.i2i_prompt system += self.options.nsfw_ok if nsfw else self.options.nsfw_no system += self.options.details_prompt chat_template = [ { "role": "system", "content": [ {"type": "text", "text": system } ] }, { "role": "user", "content": [ {"type": "text", "text": prompt_text}, {"type": "image", "image": b64(current_image)} ] }, ] else: if not has_system: system = self.options.i2i_noprompt system += self.options.nsfw_ok if nsfw else self.options.nsfw_no system += self.options.details_prompt chat_template = [ { "role": "system", "content": [ {"type": "text", "text": system } ] }, { "role": "user", "content": [ {"type": "image", "image": b64(current_image)} ] }, ] else: if not has_system: system = self.options.t2i_prompt system += self.options.nsfw_ok if nsfw else self.options.nsfw_no system += self.options.details_prompt if not self.tokenizer.is_processor: chat_template = [ { "role": "system", "content": system }, { "role": "user", "content": prompt_text }, ] else: chat_template = [ { "role": "system", "content": [ {"type": "text", "text": system } ] }, { "role": "user", "content": [ {"type": "text", "text": prompt_text}, ] }, ] # Prepare prefill (VQA approach: string concatenation, not assistant message) prefill_text = (prefill or '').strip() use_prefill = len(prefill_text) > 0 is_thinking = is_thinking_model(model) debug_log(f'Prompt enhance: chat_template roles={[msg["role"] for msg in chat_template]} is_thinking={is_thinking} thinking={thinking} use_prefill={use_prefill}') t0 = time.time() self.busy = True try: # Generate text prompt using template (WITHOUT enable_thinking parameter) # Let template naturally generate for thinking models try: text_prompt = self.tokenizer.apply_chat_template( chat_template, add_generation_prompt=True, tokenize=False, ) except TypeError: text_prompt = self.tokenizer.apply_chat_template( chat_template, tokenize=False, ) # Manually handle thinking tags and prefill (VQA Qwen approach) if is_thinking: if not thinking: # User wants to SKIP thinking # Template opened the block with , close it immediately text_prompt += "\n" if use_prefill: text_prompt += prefill_text debug_log('Prompt enhance: forced thinking off, appended ') else: # User wants thinking - prefill becomes part of thought process if use_prefill: text_prompt += prefill_text debug_log('Prompt enhance: thinking enabled, prefill inside think block') else: # Standard model (no block) if use_prefill: text_prompt += prefill_text debug_log(f'Prompt enhance: final text_prompt (last 200 chars)="{text_prompt[-200:]}"') # Tokenize the final prompt # For VL models with images, pass the image to the processor (like VQA does) if self.tokenizer.is_processor and current_image is not None: inputs = self.tokenizer(text=[text_prompt], images=[current_image], padding=True, return_tensors="pt") elif self.tokenizer.is_processor: # VL processor without image - must use explicit text= parameter inputs = self.tokenizer(text=[text_prompt], images=None, padding=True, return_tensors="pt") else: inputs = self.tokenizer(text_prompt, return_tensors="pt") inputs = inputs.to(devices.device).to(devices.dtype) input_len = inputs['input_ids'].shape[1] debug_log(f'Prompt enhance: input_len={input_len} input_ids_shape={inputs["input_ids"].shape} sample={sample} temp={temperature} penalty={penalty} max_tokens={tokens}') except Exception as e: shared.log.error(f'Prompt enhance tokenize: {e}') errors.display(e, 'Prompt enhance') self.busy = False return prompt_text # Return original text part on error try: with devices.inference_context(): sd_models.move_model(self.llm, devices.device) gen_kwargs = { 'do_sample': sample, 'temperature': float(temperature), 'max_new_tokens': int(tokens), 'repetition_penalty': float(penalty), } if top_k > 0: gen_kwargs['top_k'] = int(top_k) if top_p > 0: gen_kwargs['top_p'] = float(top_p) outputs = self.llm.generate(**inputs, **gen_kwargs) if shared.opts.diffusers_offload_mode != 'none': sd_models.move_model(self.llm, devices.cpu, force=True) devices.torch_gc(force=True, reason='prompt enhance offload') outputs_cropped = outputs[:, input_len:] response = self.tokenizer.batch_decode( outputs_cropped, skip_special_tokens=True, clean_up_tokenization_spaces=True, ) if debug_enabled: response_before_clean = response[0] if isinstance(response, list) else response debug_log(f'Prompt enhance: response_before_clean="{response_before_clean}"') except Exception as e: outputs = None shared.log.error(f'Prompt enhance generate: {e}') errors.display(e, 'Prompt enhance') self.busy = False response = f'Error: {str(e)}' t1 = time.time() if isinstance(response, list): response = response[0] is_censored = self.censored(response) if not is_censored: response = self.clean(response, keep_thinking=keep_thinking, prefill_text=prefill_text, keep_prefill=keep_prefill) response = self.post(response, prefix, suffix, networks) shared.log.info(f'Prompt enhance: model="{model}" nsfw={nsfw} time={t1-t0:.2f} seed={seed} sample={sample} temperature={temperature} penalty={penalty} thinking={thinking} keep_thinking={keep_thinking} prefill="{prefill_text[:20] if prefill_text else ""}" keep_prefill={keep_prefill} tokens={tokens} inputs={input_len} outputs={outputs.shape[-1] if isinstance(outputs, torch.Tensor) else 0} prompt={len(prompt_text)} response={len(response)}') debug_log(f'Prompt enhance: prompt="{prompt_text}"') debug_log(f'Prompt enhance: response_after_clean="{response}"') self.busy = False if is_censored: shared.log.warning(f'Prompt enhance: censored response="{response}"') return prompt # Return original full prompt on censorship return response def apply(self, prompt, image, apply_prompt, llm_model, prompt_system, prompt_prefix, prompt_suffix, max_tokens, do_sample, temperature, repetition_penalty, top_k, top_p, thinking_mode, nsfw_mode, use_vision, prefill_text, keep_prefill, keep_thinking): response = self.enhance( prompt=prompt, image=image, prefix=prompt_prefix, suffix=prompt_suffix, model=llm_model, system=prompt_system, sample=do_sample, tokens=max_tokens, temperature=temperature, penalty=repetition_penalty, top_k=top_k, top_p=top_p, thinking=thinking_mode, nsfw=nsfw_mode, use_vision=use_vision, prefill=prefill_text, keep_prefill=keep_prefill, keep_thinking=keep_thinking, ) if apply_prompt: return [response, response] return [response, gr.update()] def get_custom(self, name): # Strip symbols from display name to get repo repo_name = get_model_repo_from_display(name) model_repo = self.options.models.get(repo_name, {}).get('repo', None) or repo_name model_gguf = self.options.models.get(repo_name, {}).get('gguf', None) model_type = self.options.models.get(repo_name, {}).get('type', None) model_file = self.options.models.get(repo_name, {}).get('file', None) return [model_repo, model_gguf, model_type, model_file] def update_vision_toggle(self, model_name): """Update vision toggle interactivity and value based on model selection.""" repo_name = get_model_repo_from_display(model_name) is_vl = is_vision_model(repo_name) # When non-VL model: disable and uncheck. When VL model: enable and check. return gr.update(interactive=is_vl, value=is_vl) def ui(self, _is_img2img): with gr.Accordion('Prompt enhance', open=False, elem_id='prompt_enhance'): gr.HTML('') with gr.Row(): apply_btn = gr.Button(value='Enhance now', elem_id='prompt_enhance_apply', variant='primary') with gr.Row(): apply_prompt = gr.Checkbox(label='Apply to prompt', value=False) apply_auto = gr.Checkbox(label='Auto enhance', value=False) with gr.Row(): # Set initial state based on whether default model supports vision default_is_vl = is_vision_model(Options.default) use_vision = gr.Checkbox(label='Use vision', value=default_is_vl, interactive=default_is_vl, elem_id='prompt_enhance_use_vision') gr.HTML('
') with gr.Group(): with gr.Row(): llm_model = gr.Dropdown(label='LLM model', choices=Options.get_model_choices(), value=Options.get_default_display(), interactive=True, allow_custom_value=True, elem_id='prompt_enhance_model') with gr.Row(): load_btn = gr.Button(value='Load model', elem_id='prompt_enhance_load', variant='secondary') load_btn.click(fn=self.load, inputs=[llm_model], outputs=[]) unload_btn = gr.Button(value='Unload model', elem_id='prompt_enhance_unload', variant='secondary') unload_btn.click(fn=self.unload, inputs=[], outputs=[]) with gr.Accordion('Custom model', open=False, elem_id='prompt_enhance_custom'): with gr.Row(): model_repo = gr.Textbox(label='Model repo', value=None, interactive=True, elem_id='prompt_enhance_model_repo', placeholder='Original model repo on huggingface') with gr.Row(): model_gguf = gr.Textbox(label='Model gguf', value=None, interactive=True, elem_id='prompt_enhance_model_gguf', placeholder='Optional GGUF model repo on huggingface') with gr.Row(): model_type = gr.Textbox(label='Model type', value=None, interactive=True, elem_id='prompt_enhance_model_type', placeholder='Optional GGUF model type') with gr.Row(): model_file = gr.Textbox(label='Model file', value=None, interactive=True, elem_id='prompt_enhance_model_file', placeholder='Optional GGUF model file inside GGUF model repo') with gr.Row(): custom_btn = gr.Button(value='Load custom model', elem_id='prompt_enhance_custom_load', variant='secondary') custom_btn.click(fn=self.load, inputs=[model_repo, model_repo, model_gguf, model_type, model_file], outputs=[]) llm_model.change(fn=self.get_custom, inputs=[llm_model], outputs=[model_repo, model_gguf, model_type, model_file]) gr.HTML('
') with gr.Accordion('Options', open=False, elem_id='prompt_enhance_options'): with gr.Row(): max_tokens = gr.Slider(label='Max tokens', value=self.options.max_tokens, minimum=10, maximum=1024, step=1, interactive=True) do_sample = gr.Checkbox(label='Use samplers', value=self.options.do_sample, interactive=True) with gr.Row(): temperature = gr.Slider(label='Temperature', value=self.options.temperature, minimum=0.0, maximum=1.0, step=0.01, interactive=True) repetition_penalty = gr.Slider(label='Repetition penalty', value=self.options.repetition_penalty, minimum=0.0, maximum=2.0, step=0.01, interactive=True) with gr.Row(): top_k = gr.Slider(label='Top-K', value=self.options.top_k, minimum=0, maximum=100, step=1, interactive=True) top_p = gr.Slider(label='Top-P', value=self.options.top_p, minimum=0.0, maximum=1.0, step=0.01, interactive=True) with gr.Row(): nsfw_mode = gr.Checkbox(label='NSFW allowed', value=True, interactive=True) thinking_mode = gr.Checkbox(label='Thinking mode', value=False, interactive=True) with gr.Row(): keep_thinking = gr.Checkbox(label='Keep Thinking Trace', value=False, interactive=True) keep_prefill = gr.Checkbox(label='Keep Prefill', value=False, interactive=True) with gr.Row(): prefill_text = gr.Textbox(label='Prefill text', value='', placeholder='Optional: pre-fill start of model response', interactive=True, lines=1) gr.HTML('
') with gr.Accordion('Input', open=False, elem_id='prompt_enhance_system_prompt'): # Corrected elem_id reference with gr.Row(): prompt_prefix = gr.Textbox(label='Prompt prefix', value='', placeholder='Text prepended to the enhanced result', interactive=True, lines=2, elem_id='prompt_enhance_prefix') with gr.Row(): prompt_suffix = gr.Textbox(label='Prompt suffix', value='', placeholder='Text appended to the enhanced result', interactive=True, lines=2, elem_id='prompt_enhance_suffix') with gr.Row(): prompt_system = gr.Textbox(label='System prompt', value='', placeholder='Leave empty to use built-in enhancement instructions', interactive=True, lines=4, elem_id='prompt_enhance_system') with gr.Accordion('Output', open=True, elem_id='prompt_enhance_output'): # Corrected elem_id reference with gr.Row(): prompt_output = gr.Textbox(label='Enhanced prompt', value='', placeholder='Enhanced prompt will appear here', interactive=True, lines=4, max_lines=12, elem_id='prompt_enhance_result') with gr.Row(): clear_btn = gr.Button(value='Clear', elem_id='prompt_enhance_clear', variant='secondary') clear_btn.click(fn=lambda: '', inputs=[], outputs=[prompt_output]) copy_btn = gr.Button(value='Set prompt', elem_id='prompt_enhance_copy', variant='secondary') copy_btn.click(fn=lambda x: x, inputs=[prompt_output], outputs=[self.prompt]) if self.image is None: self.image = gr.Image(type='pil', interactive=False, visible=False, width=64, height=64) # dummy image # Update vision toggle interactivity when model changes llm_model.change(fn=self.update_vision_toggle, inputs=[llm_model], outputs=[use_vision], show_progress=False) apply_btn.click(fn=self.apply, inputs=[self.prompt, self.image, apply_prompt, llm_model, prompt_system, prompt_prefix, prompt_suffix, max_tokens, do_sample, temperature, repetition_penalty, top_k, top_p, thinking_mode, nsfw_mode, use_vision, prefill_text, keep_prefill, keep_thinking], outputs=[prompt_output, self.prompt]) return [self.prompt, self.image, apply_auto, llm_model, prompt_system, prompt_prefix, prompt_suffix, max_tokens, do_sample, temperature, repetition_penalty, top_k, top_p, thinking_mode, nsfw_mode, use_vision, prefill_text, keep_prefill, keep_thinking] def after_component(self, component, **kwargs): # searching for actual ui prompt components if getattr(component, 'elem_id', '') in ['txt2img_prompt', 'img2img_prompt', 'control_prompt', 'video_prompt']: self.prompt = component self.prompt.use_original = True if getattr(component, 'elem_id', '') in ['img2img_image', 'control_input_select']: self.image = component self.image.use_original = True def before_process(self, p: processing.StableDiffusionProcessing, *args, **kwargs): # pylint: disable=unused-argument _self_prompt, self_image, apply_auto, llm_model, prompt_system, prompt_prefix, prompt_suffix, max_tokens, do_sample, temperature, repetition_penalty, top_k, top_p, thinking_mode, nsfw_mode, use_vision, prefill_text, keep_prefill, keep_thinking = args if not apply_auto and not p.enhance_prompt: return if shared.state.skipped or shared.state.interrupted: return p.prompt = shared.prompt_styles.apply_styles_to_prompt(p.prompt, p.styles) p.negative_prompt = shared.prompt_styles.apply_negative_styles_to_prompt(p.negative_prompt, p.styles) shared.prompt_styles.apply_styles_to_extra(p) p.styles = [] jobid = shared.state.begin('LLM') p.prompt = self.enhance( prompt=p.prompt, seed=p.seed, image=self_image, prefix=prompt_prefix, suffix=prompt_suffix, model=llm_model, system=prompt_system, sample=do_sample, tokens=max_tokens, temperature=temperature, penalty=repetition_penalty, top_k=top_k, top_p=top_p, thinking=thinking_mode, nsfw=nsfw_mode, use_vision=use_vision, prefill=prefill_text, keep_prefill=keep_prefill, keep_thinking=keep_thinking, ) timer.process.record('prompt') p.extra_generation_params['LLM'] = llm_model shared.state.end(jobid)