import transformers import diffusers from modules import shared, devices, sd_models, model_quant, sd_hijack_te from pipelines import generic def load_longcat(checkpoint_info, diffusers_load_config=None): if diffusers_load_config is None: diffusers_load_config = {} repo_id = sd_models.path_to_repo(checkpoint_info) sd_models.hf_auth_check(checkpoint_info) load_args, _quant_args = model_quant.get_dit_args(diffusers_load_config, allow_quant=False) shared.log.debug(f'Load model: type=LongCat repo="{repo_id}" config={diffusers_load_config} offload={shared.opts.diffusers_offload_mode} dtype={devices.dtype} args={diffusers_load_config}') transformer = generic.load_transformer(repo_id, cls_name=diffusers.LongCatImageTransformer2DModel, load_config=diffusers_load_config) text_encoder = generic.load_text_encoder(repo_id, cls_name=transformers.Qwen2_5_VLForConditionalGeneration, load_config=diffusers_load_config) text_processor = transformers.Qwen2VLProcessor.from_pretrained(repo_id, subfolder='tokenizer', cache_dir=shared.opts.hfcache_dir) if 'edit' in repo_id.lower(): cls = diffusers.LongCatImageEditPipeline else: cls = diffusers.LongCatImagePipeline pipe = cls.from_pretrained( repo_id, cache_dir=shared.opts.diffusers_dir, transformer=transformer, text_encoder=text_encoder, text_processor=text_processor, **load_args, ) diffusers.pipelines.auto_pipeline.AUTO_TEXT2IMAGE_PIPELINES_MAPPING["longcat"] = cls diffusers.pipelines.auto_pipeline.AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["longcat"] = cls diffusers.pipelines.auto_pipeline.AUTO_INPAINT_PIPELINES_MAPPING["longcat"] = cls del transformer del text_encoder del text_processor sd_hijack_te.init_hijack(pipe) devices.torch_gc(force=True, reason='load') return pipe