import os import sys import json import diffusers import transformers from modules import shared, devices, errors, sd_models, model_quant debug = os.environ.get('SD_LOAD_DEBUG', None) is not None def _loader(component): """Return loader type for log messages.""" if sys.platform != 'linux': return 'default' if component == 'diffusers': return 'runai' if shared.opts.runai_streamer_diffusers else 'default' return 'runai' if shared.opts.runai_streamer_transformers else 'default' def load_transformer(repo_id, cls_name, load_config=None, subfolder="transformer", allow_quant=True, variant=None, dtype=None, modules_to_not_convert=None, modules_dtype_dict=None): transformer = None if load_config is None: load_config = {} if modules_to_not_convert is None: modules_to_not_convert = [] if modules_dtype_dict is None: modules_dtype_dict = {} jobid = shared.state.begin('Load DiT') try: load_args, quant_args = model_quant.get_dit_args(load_config, module='Model', device_map=True, allow_quant=allow_quant, modules_to_not_convert=modules_to_not_convert, modules_dtype_dict=modules_dtype_dict) quant_type = model_quant.get_quant_type(quant_args) dtype = dtype or devices.dtype local_file = None if shared.opts.sd_unet is not None and shared.opts.sd_unet != 'Default': from modules import sd_unet if shared.opts.sd_unet not in list(sd_unet.unet_dict): shared.log.error(f'Load module: type=transformer file="{shared.opts.sd_unet}" not found') elif os.path.exists(sd_unet.unet_dict[shared.opts.sd_unet]): local_file = sd_unet.unet_dict[shared.opts.sd_unet] if local_file is not None and local_file.lower().endswith('.gguf'): shared.log.debug(f'Load model: transformer="{local_file}" cls={cls_name.__name__} quant="{quant_type}" loader={_loader("diffusers")} args={load_args}') from modules import ggml ggml.install_gguf() loader = cls_name.from_single_file if hasattr(cls_name, 'from_single_file') else cls_name.from_pretrained transformer = loader( local_file, quantization_config=diffusers.GGUFQuantizationConfig(compute_dtype=dtype), cache_dir=shared.opts.hfcache_dir, **load_args, ) transformer = model_quant.do_post_load_quant(transformer, allow=quant_type is not None) elif local_file is not None and local_file.lower().endswith('.safetensors'): shared.log.debug(f'Load model: transformer="{local_file}" cls={cls_name.__name__} quant="{quant_type}" loader={_loader("diffusers")} args={load_args}') if dtype is not None: load_args['torch_dtype'] = dtype load_args.pop('device_map', None) # single-file uses different syntax loader = cls_name.from_single_file if hasattr(cls_name, 'from_single_file') else cls_name.from_pretrained transformer = loader( local_file, cache_dir=shared.opts.hfcache_dir, **load_args, **quant_args, ) else: shared.log.debug(f'Load model: transformer="{repo_id}" cls={cls_name.__name__} subfolder={subfolder} quant="{quant_type}" loader={_loader("diffusers")} args={load_args}') if 'sdnq-' in repo_id.lower(): quant_args = {} if dtype is not None: load_args['torch_dtype'] = dtype if subfolder is not None: load_args['subfolder'] = subfolder if variant is not None: load_args['variant'] = variant transformer = cls_name.from_pretrained( repo_id, cache_dir=shared.opts.hfcache_dir, **load_args, **quant_args, ) sd_models.allow_post_quant = False # we already handled it if shared.opts.diffusers_offload_mode != 'none' and transformer is not None: sd_models.move_model(transformer, devices.cpu) if transformer is not None and not hasattr(transformer, 'quantization_config'): # attach quantization_config if hasattr(transformer, 'config') and hasattr(transformer.config, 'quantization_config'): transformer.quantization_config = transformer.config.quantization_config elif (quant_type is not None) and (quant_args.get('quantization_config', None) is not None): transformer.quantization_config = quant_args.get('quantization_config', None) except Exception as e: shared.log.error(f'Load model: transformer="{repo_id}" cls={cls_name.__name__} {e}') errors.display(e, 'Load') raise devices.torch_gc() shared.state.end(jobid) return transformer def load_text_encoder(repo_id, cls_name, load_config=None, subfolder="text_encoder", allow_quant=True, allow_shared=True, variant=None, dtype=None, modules_to_not_convert=None, modules_dtype_dict=None): text_encoder = None if load_config is None: load_config = {} if modules_to_not_convert is None: modules_to_not_convert = [] if modules_dtype_dict is None: modules_dtype_dict = {} jobid = shared.state.begin('Load TE') try: load_args, quant_args = model_quant.get_dit_args(load_config, module='TE', device_map=True, allow_quant=allow_quant, modules_to_not_convert=modules_to_not_convert, modules_dtype_dict=modules_dtype_dict) quant_type = model_quant.get_quant_type(quant_args) load_args.pop('torch_dtype', None) dtype = dtype or devices.dtype load_args['dtype'] = dtype # load from local file if specified local_file = None if shared.opts.sd_text_encoder is not None and shared.opts.sd_text_encoder != 'Default': from modules import model_te if shared.opts.sd_text_encoder not in list(model_te.te_dict): shared.log.error(f'Load module: type=te file="{shared.opts.sd_text_encoder}" not found') elif os.path.exists(model_te.te_dict[shared.opts.sd_text_encoder]): local_file = model_te.te_dict[shared.opts.sd_text_encoder] # load from local file gguf if local_file is not None and local_file.lower().endswith('.gguf'): shared.log.debug(f'Load model: text_encoder="{local_file}" cls={cls_name.__name__} quant="{quant_type}" loader={_loader("transformers")}') """ from modules import ggml ggml.install_gguf() text_encoder = cls_name.from_pretrained( gguf_file=local_file, quantization_config=diffusers.GGUFQuantizationConfig(compute_dtype=dtype), cache_dir=shared.opts.hfcache_dir, **load_args, ) text_encoder = model_quant.do_post_load_quant(text_encoder, allow=quant_type is not None) """ text_encoder = model_te.load_t5(local_file) text_encoder = model_quant.do_post_load_quant(text_encoder, allow=quant_type is not None) # load from local file safetensors elif local_file is not None and local_file.lower().endswith('.safetensors'): shared.log.debug(f'Load model: text_encoder="{local_file}" cls={cls_name.__name__} quant="{quant_type}" loader={_loader("transformers")}') from modules import model_te text_encoder = model_te.load_t5(local_file) text_encoder = model_quant.do_post_load_quant(text_encoder, allow=quant_type is not None) # use shared t5 if possible elif cls_name == transformers.T5EncoderModel and allow_shared and shared.opts.te_shared_t5: if model_quant.check_nunchaku('TE'): import nunchaku repo_id = 'nunchaku-tech/nunchaku-t5/awq-int4-flux.1-t5xxl.safetensors' cls_name = nunchaku.NunchakuT5EncoderModel shared.log.debug(f'Load model: text_encoder="{repo_id}" cls={cls_name.__name__} quant="SVDQuant" loader={_loader("transformers")}') text_encoder = nunchaku.NunchakuT5EncoderModel.from_pretrained( repo_id, torch_dtype=dtype, ) text_encoder.quantization_method = 'SVDQuant' else: if 'sdnq-uint4-svd' in repo_id.lower(): repo_id = 'Disty0/FLUX.1-dev-SDNQ-uint4-svd-r32' load_args['subfolder'] = 'text_encoder_2' else: repo_id = 'Disty0/t5-xxl' with open(os.path.join('configs', 'flux', 'text_encoder_2', 'config.json'), encoding='utf8') as f: load_args['config'] = transformers.T5Config(**json.load(f)) shared.log.debug(f'Load model: text_encoder="{repo_id}" cls={cls_name.__name__} quant="{quant_type}" loader={_loader("transformers")} shared={shared.opts.te_shared_t5}') text_encoder = cls_name.from_pretrained( repo_id, cache_dir=shared.opts.hfcache_dir, **load_args, **quant_args, ) elif cls_name == transformers.UMT5EncoderModel and allow_shared and shared.opts.te_shared_t5: if 'sdnq-uint4-svd' in repo_id.lower(): repo_id = 'Disty0/Wan2.2-T2V-A14B-SDNQ-uint4-svd-r32' else: repo_id = 'Wan-AI/Wan2.1-T2V-1.3B-Diffusers' subfolder = 'text_encoder' shared.log.debug(f'Load model: text_encoder="{repo_id}" cls={cls_name.__name__} quant="{quant_type}" loader={_loader("transformers")} shared={shared.opts.te_shared_t5}') text_encoder = cls_name.from_pretrained( repo_id, cache_dir=shared.opts.hfcache_dir, subfolder=subfolder, **load_args, **quant_args, ) elif cls_name == transformers.Qwen2_5_VLForConditionalGeneration and allow_shared and shared.opts.te_shared_t5: repo_id = 'hunyuanvideo-community/HunyuanImage-2.1-Diffusers' subfolder = 'text_encoder' shared.log.debug(f'Load model: text_encoder="{repo_id}" cls={cls_name.__name__} quant="{quant_type}" loader={_loader("transformers")} shared={shared.opts.te_shared_t5}') text_encoder = cls_name.from_pretrained( repo_id, cache_dir=shared.opts.hfcache_dir, subfolder=subfolder, **load_args, **quant_args, ) # Qwen3ForCausalLM - shared text encoders by hidden_size: # - Z-Image, Klein-4B: Qwen3-4B (hidden_size=2560) # - Klein-9B: Qwen3-8B (hidden_size=4096) # SDNQ repos for Klein and Z-Image contain text encoders pre-quantized with different quantization methods, skip shared loading elif cls_name == transformers.Qwen3ForCausalLM and allow_shared and shared.opts.te_shared_t5 and 'sdnq' not in repo_id.lower(): if '-9b' in repo_id.lower(): shared_repo = 'black-forest-labs/FLUX.2-klein-9B' # 9B variants use Qwen3-8B else: shared_repo = 'Tongyi-MAI/Z-Image-Turbo' # 4B variants and Z-Image use Qwen3-4B subfolder = 'text_encoder' shared.log.debug(f'Load model: text_encoder="{shared_repo}" cls={cls_name.__name__} quant="{quant_type}" loader={_loader("transformers")} shared={shared.opts.te_shared_t5}') text_encoder = cls_name.from_pretrained( shared_repo, cache_dir=shared.opts.hfcache_dir, subfolder=subfolder, **load_args, **quant_args, ) # load from repo if text_encoder is None: shared.log.debug(f'Load model: text_encoder="{repo_id}" cls={cls_name.__name__} quant="{quant_type}" loader={_loader("transformers")} shared={shared.opts.te_shared_t5}') if subfolder is not None: load_args['subfolder'] = subfolder if variant is not None: load_args['variant'] = variant text_encoder = cls_name.from_pretrained( repo_id, cache_dir=shared.opts.hfcache_dir, **load_args, **quant_args, ) sd_models.allow_post_quant = False # we already handled it if shared.opts.diffusers_offload_mode != 'none' and text_encoder is not None: sd_models.move_model(text_encoder, devices.cpu) if text_encoder is not None and not hasattr(text_encoder, 'quantization_config'): # attach quantization_config if hasattr(text_encoder, 'config') and hasattr(text_encoder.config, 'quantization_config'): text_encoder.quantization_config = text_encoder.config.quantization_config elif (quant_type is not None) and (quant_args.get('quantization_config', None) is not None): text_encoder.quantization_config = quant_args.get('quantization_config', None) except Exception as e: shared.log.error(f'Load model: text_encoder="{repo_id}" cls={cls_name.__name__} {e}') errors.display(e, 'Load') raise devices.torch_gc() shared.state.end(jobid) return text_encoder