import time import threading from collections import namedtuple import torch import torchvision.transforms as T from PIL import Image from modules import shared, devices, processing, images, sd_vae_approx, sd_vae_taesd, sd_vae_stablecascade, sd_samplers, timer SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options']) approximation_indexes = { "Simple": 0, "Approximate": 1, "TAESD": 2, "Full VAE": 3 } flow_models = ['f1', 'f2', 'sd3', 'lumina', 'auraflow', 'sana', 'zimage', 'lumina2', 'cogview4', 'h1', 'cosmos', 'chroma', 'omnigen', 'omnigen2', 'longcat'] warned = False queue_lock = threading.Lock() def warn_once(message): global warned # pylint: disable=global-statement if not warned: shared.log.warning(f'VAE: {message}') warned = True def setup_img2img_steps(p, steps=None): if shared.opts.img2img_fix_steps or steps is not None: requested_steps = (steps or p.steps) steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0 t_enc = requested_steps - 1 else: steps = p.steps t_enc = int(min(p.denoising_strength, 0.999) * steps) return steps, t_enc def single_sample_to_image(sample, approximation=None): with queue_lock: t0 = time.time() if approximation is None: approximation = approximation_indexes.get(shared.opts.show_progress_type, None) if approximation is None: warn_once('Unknown decode type') approximation = 0 try: if sample.dtype == torch.bfloat16 and (approximation == 0 or approximation == 1): sample = sample.to(torch.float16) except Exception as e: warn_once(f'Preview: {e}') if len(sample.shape) > 4: # likely unknown video latent (e.g. svd) return Image.new(mode="RGB", size=(512, 512)) if len(sample.shape) == 4 and sample.shape[0]: # likely animatediff latent sample = sample.permute(1, 0, 2, 3)[0] if approximation == 2: # TAESD if (len(sample.shape) == 3 or len(sample.shape) == 4) and shared.opts.live_preview_downscale and (sample.shape[-1]*sample.shape[-2] > 128*128): try: scale = (128 * 128) / (sample.shape[-1] * sample.shape[-2]) sample = torch.nn.functional.interpolate(sample.unsqueeze(0), scale_factor=[scale, scale], mode='bilinear', align_corners=False)[0] except Exception: pass x_sample = sd_vae_taesd.decode(sample) # x_sample = (1.0 + x_sample) / 2.0 # preview requires smaller range elif shared.sd_model_type == 'sc' and approximation != 3: x_sample = sd_vae_stablecascade.decode(sample) elif approximation == 0: # Simple x_sample = sd_vae_approx.cheap_approximation(sample) * 0.5 + 0.5 elif approximation == 1: # Approximate x_sample = sd_vae_approx.nn_approximation(sample) * 0.5 + 0.5 if shared.sd_model_type == "sdxl": x_sample = x_sample[[2, 1, 0], :, :] # BGR to RGB elif approximation == 3: # Full VAE x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0] else: warn_once(f"Unknown latent decode type: {approximation}") return Image.new(mode="RGB", size=(512, 512)) try: if isinstance(x_sample, Image.Image): image = x_sample else: if x_sample.shape[0] > 4 or x_sample.shape[0] == 4: return Image.new(mode="RGB", size=(512, 512)) if x_sample.dtype == torch.bfloat16: x_sample = x_sample.to(torch.float16) if len(x_sample.shape) == 4: x_sample = x_sample[0] transform = T.ToPILImage() image = transform(x_sample) except Exception as e: warn_once(f'Preview: {e}') image = Image.new(mode="RGB", size=(512, 512)) t1 = time.time() timer.process.add('preview', t1 - t0) return image def sample_to_image(samples, index=0, approximation=None): return single_sample_to_image(samples[index], approximation) def samples_to_image_grid(samples, approximation=None): return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples]) def images_tensor_to_samples(image, approximation=None, model=None): '''image[0, 1] -> latent''' if approximation is None: approximation = approximation_indexes.get(shared.opts.show_progress_type, 0) if approximation == 2: image = image.to(devices.device, devices.dtype) x_latent = sd_vae_taesd.encode(image) else: if model is None: model = shared.sd_model model.first_stage_model.to(devices.dtype_vae) image = image.to(shared.device, dtype=devices.dtype_vae) image = image * 2 - 1 if len(image) > 1: image_latents = [model.get_first_stage_encoding(model.encode_first_stage(torch.unsqueeze(img, 0)))[0] for img in image] x_latent = torch.stack(image_latents) else: x_latent = model.get_first_stage_encoding(model.encode_first_stage(image)) return x_latent def store_latent(decoded): shared.state.current_latent = decoded if shared.opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % shared.opts.show_progress_every_n_steps == 0: if not shared.parallel_processing_allowed: image = sample_to_image(decoded) shared.state.assign_current_image(image) def is_sampler_using_eta_noise_seed_delta(p): """returns whether sampler from config will use eta noise seed delta for image creation""" sampler_config = sd_samplers.find_sampler_config(p.sampler_name) eta = 0 if hasattr(p, "eta"): eta = p.eta if not hasattr(p.sampler, "eta"): return False if eta is None and p.sampler is not None: eta = p.sampler.eta if eta is None and sampler_config is not None: eta = 0 if sampler_config.options.get("default_eta_is_0", False) else 1.0 if eta == 0: return False return True class InterruptedException(BaseException): pass