import os import time from collections import namedtuple import threading import re import gradio as gr from PIL import Image from modules import devices, paths, shared, errors, sd_models debug_enabled = os.environ.get('SD_INTERROGATE_DEBUG', None) is not None debug_log = shared.log.trace if debug_enabled else lambda *args, **kwargs: None def _apply_blip2_fix(model, processor): """Apply compatibility fix for BLIP2 models with newer transformers versions.""" from transformers import AddedToken if not hasattr(model.config, 'num_query_tokens'): return processor.num_query_tokens = model.config.num_query_tokens image_token = AddedToken("", normalized=False, special=True) processor.tokenizer.add_tokens([image_token], special_tokens=True) model.resize_token_embeddings(len(processor.tokenizer), pad_to_multiple_of=64) model.config.image_token_index = len(processor.tokenizer) - 1 debug_log(f'CLIP load: applied BLIP2 tokenizer fix num_query_tokens={model.config.num_query_tokens}') caption_models = { 'blip-base': 'Salesforce/blip-image-captioning-base', 'blip-large': 'Salesforce/blip-image-captioning-large', 'blip2-opt-2.7b': 'Salesforce/blip2-opt-2.7b-coco', 'blip2-opt-6.7b': 'Salesforce/blip2-opt-6.7b', 'blip2-flip-t5-xl': 'Salesforce/blip2-flan-t5-xl', 'blip2-flip-t5-xxl': 'Salesforce/blip2-flan-t5-xxl', } caption_types = [ 'best', 'fast', 'classic', 'caption', 'negative', ] clip_models = [] ci = None blip_image_eval_size = 384 clip_model_name = 'ViT-L/14' Category = namedtuple("Category", ["name", "topn", "items"]) re_topn = re.compile(r"\.top(\d+)\.") load_lock = threading.Lock() class BatchWriter: def __init__(self, folder, mode='w'): self.folder = folder self.csv = None self.file = None self.mode = mode def add(self, file, prompt): txt_file = os.path.splitext(file)[0] + ".txt" if self.mode == 'a': prompt = '\n' + prompt with open(os.path.join(self.folder, txt_file), self.mode, encoding='utf-8') as f: f.write(prompt) def close(self): if self.file is not None: self.file.close() def update_interrogate_params(): if ci is not None: ci.caption_max_length=shared.opts.interrogate_clip_max_length ci.chunk_size=shared.opts.interrogate_clip_chunk_size ci.flavor_intermediate_count=shared.opts.interrogate_clip_flavor_count ci.clip_offload=shared.opts.interrogate_offload ci.caption_offload=shared.opts.interrogate_offload def get_clip_models(): return clip_models def refresh_clip_models(): global clip_models # pylint: disable=global-statement import open_clip models = sorted(open_clip.list_pretrained()) shared.log.debug(f'Interrogate: pkg=openclip version={open_clip.__version__} models={len(models)}') clip_models = ['/'.join(x) for x in models] return clip_models def load_interrogator(clip_model, blip_model): from installer import install install('clip_interrogator==0.6.0') import clip_interrogator clip_interrogator.clip_interrogator.CAPTION_MODELS = caption_models global ci # pylint: disable=global-statement if ci is None: t0 = time.time() device = devices.get_optimal_device() cache_path = os.path.join(paths.models_path, 'Interrogator') shared.log.info(f'CLIP load: clip="{clip_model}" blip="{blip_model}" device={device}') debug_log(f'CLIP load: cache_path="{cache_path}" max_length={shared.opts.interrogate_clip_max_length} chunk_size={shared.opts.interrogate_clip_chunk_size} flavor_count={shared.opts.interrogate_clip_flavor_count} offload={shared.opts.interrogate_offload}') interrogator_config = clip_interrogator.Config( device=device, cache_path=cache_path, clip_model_name=clip_model, caption_model_name=blip_model, quiet=True, caption_max_length=shared.opts.interrogate_clip_max_length, chunk_size=shared.opts.interrogate_clip_chunk_size, flavor_intermediate_count=shared.opts.interrogate_clip_flavor_count, clip_offload=shared.opts.interrogate_offload, caption_offload=shared.opts.interrogate_offload, ) ci = clip_interrogator.Interrogator(interrogator_config) if blip_model.startswith('blip2-'): _apply_blip2_fix(ci.caption_model, ci.caption_processor) shared.log.debug(f'CLIP load: time={time.time()-t0:.2f}') elif clip_model != ci.config.clip_model_name or blip_model != ci.config.caption_model_name: t0 = time.time() if clip_model != ci.config.clip_model_name: shared.log.info(f'CLIP load: clip="{clip_model}" reloading') debug_log(f'CLIP load: previous clip="{ci.config.clip_model_name}"') ci.config.clip_model_name = clip_model ci.config.clip_model = None ci.load_clip_model() if blip_model != ci.config.caption_model_name: shared.log.info(f'CLIP load: blip="{blip_model}" reloading') debug_log(f'CLIP load: previous blip="{ci.config.caption_model_name}"') ci.config.caption_model_name = blip_model ci.config.caption_model = None ci.load_caption_model() if blip_model.startswith('blip2-'): _apply_blip2_fix(ci.caption_model, ci.caption_processor) shared.log.debug(f'CLIP load: time={time.time()-t0:.2f}') else: debug_log(f'CLIP: models already loaded clip="{clip_model}" blip="{blip_model}"') def unload_clip_model(): if ci is not None and shared.opts.interrogate_offload: shared.log.debug('CLIP unload: offloading models to CPU') sd_models.move_model(ci.caption_model, devices.cpu) sd_models.move_model(ci.clip_model, devices.cpu) ci.caption_offloaded = True ci.clip_offloaded = True devices.torch_gc() debug_log('CLIP unload: complete') def interrogate(image, mode, caption=None): if isinstance(image, list): image = image[0] if len(image) > 0 else None if isinstance(image, dict) and 'name' in image: image = Image.open(image['name']) if image is None: return '' image = image.convert("RGB") t0 = time.time() debug_log(f'CLIP: mode="{mode}" image_size={image.size} caption={caption is not None} min_flavors={shared.opts.interrogate_clip_min_flavors} max_flavors={shared.opts.interrogate_clip_max_flavors}') if mode == 'best': prompt = ci.interrogate(image, caption=caption, min_flavors=shared.opts.interrogate_clip_min_flavors, max_flavors=shared.opts.interrogate_clip_max_flavors, ) elif mode == 'caption': prompt = ci.generate_caption(image) if caption is None else caption elif mode == 'classic': prompt = ci.interrogate_classic(image, caption=caption, max_flavors=shared.opts.interrogate_clip_max_flavors) elif mode == 'fast': prompt = ci.interrogate_fast(image, caption=caption, max_flavors=shared.opts.interrogate_clip_max_flavors) elif mode == 'negative': prompt = ci.interrogate_negative(image, max_flavors=shared.opts.interrogate_clip_max_flavors) else: raise RuntimeError(f"Unknown mode {mode}") debug_log(f'CLIP: mode="{mode}" time={time.time()-t0:.2f} result="{prompt[:100]}..."' if len(prompt) > 100 else f'CLIP: mode="{mode}" time={time.time()-t0:.2f} result="{prompt}"') return prompt def interrogate_image(image, clip_model, blip_model, mode): jobid = shared.state.begin('Interrogate CLiP') t0 = time.time() shared.log.info(f'CLIP: mode="{mode}" clip="{clip_model}" blip="{blip_model}" image_size={image.size if image else None}') try: if shared.sd_loaded: from modules.sd_models import apply_balanced_offload # prevent circular import apply_balanced_offload(shared.sd_model) debug_log('CLIP: applied balanced offload to sd_model') load_interrogator(clip_model, blip_model) image = image.convert('RGB') prompt = interrogate(image, mode) devices.torch_gc() shared.log.debug(f'CLIP: complete time={time.time()-t0:.2f}') except Exception as e: prompt = f"Exception {type(e)}" shared.log.error(f'CLIP: {e}') errors.display(e, 'Interrogate') shared.state.end(jobid) return prompt def interrogate_batch(batch_files, batch_folder, batch_str, clip_model, blip_model, mode, write, append, recursive): files = [] if batch_files is not None: files += [f.name for f in batch_files] if batch_folder is not None: files += [f.name for f in batch_folder] if batch_str is not None and len(batch_str) > 0 and os.path.exists(batch_str) and os.path.isdir(batch_str): from modules.files_cache import list_files files += list(list_files(batch_str, ext_filter=['.png', '.jpg', '.jpeg', '.webp', '.jxl'], recursive=recursive)) if len(files) == 0: shared.log.warning('CLIP batch: no images found') return '' t0 = time.time() shared.log.info(f'CLIP batch: mode="{mode}" images={len(files)} clip="{clip_model}" blip="{blip_model}" write={write} append={append}') debug_log(f'CLIP batch: recursive={recursive} files={files[:5]}{"..." if len(files) > 5 else ""}') jobid = shared.state.begin('Interrogate batch') prompts = [] load_interrogator(clip_model, blip_model) if write: file_mode = 'w' if not append else 'a' writer = BatchWriter(os.path.dirname(files[0]), mode=file_mode) debug_log(f'CLIP batch: writing to "{os.path.dirname(files[0])}" mode="{file_mode}"') import rich.progress as rp pbar = rp.Progress(rp.TextColumn('[cyan]Caption:'), rp.BarColumn(), rp.MofNCompleteColumn(), rp.TaskProgressColumn(), rp.TimeRemainingColumn(), rp.TimeElapsedColumn(), rp.TextColumn('[cyan]{task.description}'), console=shared.console) with pbar: task = pbar.add_task(total=len(files), description='starting...') for file in files: pbar.update(task, advance=1, description=file) try: if shared.state.interrupted: shared.log.info('CLIP batch: interrupted') break image = Image.open(file).convert('RGB') prompt = interrogate(image, mode) prompts.append(prompt) if write: writer.add(file, prompt) except OSError as e: shared.log.error(f'CLIP batch: file="{file}" error={e}') if write: writer.close() ci.config.quiet = False unload_clip_model() shared.state.end(jobid) shared.log.info(f'CLIP batch: complete images={len(prompts)} time={time.time()-t0:.2f}') return '\n\n'.join(prompts) def analyze_image(image, clip_model, blip_model): t0 = time.time() shared.log.info(f'CLIP analyze: clip="{clip_model}" blip="{blip_model}" image_size={image.size if image else None}') load_interrogator(clip_model, blip_model) image = image.convert('RGB') image_features = ci.image_to_features(image) debug_log(f'CLIP analyze: features shape={image_features.shape if hasattr(image_features, "shape") else "unknown"}') top_mediums = ci.mediums.rank(image_features, 5) top_artists = ci.artists.rank(image_features, 5) top_movements = ci.movements.rank(image_features, 5) top_trendings = ci.trendings.rank(image_features, 5) top_flavors = ci.flavors.rank(image_features, 5) medium_ranks = dict(sorted(zip(top_mediums, ci.similarities(image_features, top_mediums)), key=lambda x: x[1], reverse=True)) artist_ranks = dict(sorted(zip(top_artists, ci.similarities(image_features, top_artists)), key=lambda x: x[1], reverse=True)) movement_ranks = dict(sorted(zip(top_movements, ci.similarities(image_features, top_movements)), key=lambda x: x[1], reverse=True)) trending_ranks = dict(sorted(zip(top_trendings, ci.similarities(image_features, top_trendings)), key=lambda x: x[1], reverse=True)) flavor_ranks = dict(sorted(zip(top_flavors, ci.similarities(image_features, top_flavors)), key=lambda x: x[1], reverse=True)) shared.log.debug(f'CLIP analyze: complete time={time.time()-t0:.2f}') # Format labels as text def format_category(name, ranks): lines = [f"{name}:"] for item, score in ranks.items(): lines.append(f" • {item} - {score*100:.1f}%") return '\n'.join(lines) formatted_text = '\n\n'.join([ format_category("Medium", medium_ranks), format_category("Artist", artist_ranks), format_category("Movement", movement_ranks), format_category("Trending", trending_ranks), format_category("Flavor", flavor_ranks), ]) return [ gr.update(value=medium_ranks, visible=True), gr.update(value=artist_ranks, visible=True), gr.update(value=movement_ranks, visible=True), gr.update(value=trending_ranks, visible=True), gr.update(value=flavor_ranks, visible=True), gr.update(value=formatted_text, visible=True), # New text output for the textbox ]