mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
248 lines
9.7 KiB
Python
248 lines
9.7 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import tempfile
|
|
|
|
import torch
|
|
from huggingface_hub import hf_hub_download, snapshot_download
|
|
|
|
from diffusers.loaders.single_file_utils import _extract_repo_id_and_weights_name
|
|
|
|
from ...testing_utils import (
|
|
backend_empty_cache,
|
|
is_single_file,
|
|
nightly,
|
|
require_torch_accelerator,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
def download_single_file_checkpoint(pretrained_model_name_or_path, filename, tmpdir):
|
|
"""Download a single file checkpoint from the Hub to a temporary directory."""
|
|
path = hf_hub_download(pretrained_model_name_or_path, filename=filename, local_dir=tmpdir)
|
|
return path
|
|
|
|
|
|
def download_diffusers_config(pretrained_model_name_or_path, tmpdir):
|
|
"""Download diffusers config files (excluding weights) from a repository."""
|
|
path = snapshot_download(
|
|
pretrained_model_name_or_path,
|
|
ignore_patterns=[
|
|
"**/*.ckpt",
|
|
"*.ckpt",
|
|
"**/*.bin",
|
|
"*.bin",
|
|
"**/*.pt",
|
|
"*.pt",
|
|
"**/*.safetensors",
|
|
"*.safetensors",
|
|
],
|
|
allow_patterns=["**/*.json", "*.json", "*.txt", "**/*.txt"],
|
|
local_dir=tmpdir,
|
|
)
|
|
return path
|
|
|
|
|
|
@nightly
|
|
@require_torch_accelerator
|
|
@is_single_file
|
|
class SingleFileTesterMixin:
|
|
"""
|
|
Mixin class for testing single file loading for models.
|
|
|
|
Expected class attributes:
|
|
- model_class: The model class to test
|
|
- pretrained_model_name_or_path: Hub repository ID for the pretrained model
|
|
- ckpt_path: Path or Hub path to the single file checkpoint
|
|
- subfolder: (Optional) Subfolder within the repo
|
|
- torch_dtype: (Optional) torch dtype to use for testing
|
|
|
|
Pytest mark: single_file
|
|
Use `pytest -m "not single_file"` to skip these tests
|
|
"""
|
|
|
|
pretrained_model_name_or_path = None
|
|
ckpt_path = None
|
|
|
|
def setup_method(self):
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def teardown_method(self):
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def test_single_file_model_config(self):
|
|
pretrained_kwargs = {}
|
|
single_file_kwargs = {}
|
|
|
|
pretrained_kwargs["device"] = torch_device
|
|
single_file_kwargs["device"] = torch_device
|
|
|
|
if hasattr(self, "subfolder") and self.subfolder:
|
|
pretrained_kwargs["subfolder"] = self.subfolder
|
|
|
|
if hasattr(self, "torch_dtype") and self.torch_dtype:
|
|
pretrained_kwargs["torch_dtype"] = self.torch_dtype
|
|
single_file_kwargs["torch_dtype"] = self.torch_dtype
|
|
|
|
model = self.model_class.from_pretrained(self.pretrained_model_name_or_path, **pretrained_kwargs)
|
|
model_single_file = self.model_class.from_single_file(self.ckpt_path, **single_file_kwargs)
|
|
|
|
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"]
|
|
for param_name, param_value in model_single_file.config.items():
|
|
if param_name in PARAMS_TO_IGNORE:
|
|
continue
|
|
assert model.config[param_name] == param_value, (
|
|
f"{param_name} differs between pretrained loading and single file loading: "
|
|
f"pretrained={model.config[param_name]}, single_file={param_value}"
|
|
)
|
|
|
|
def test_single_file_model_parameters(self):
|
|
pretrained_kwargs = {}
|
|
single_file_kwargs = {}
|
|
|
|
pretrained_kwargs["device"] = torch_device
|
|
single_file_kwargs["device"] = torch_device
|
|
|
|
if hasattr(self, "subfolder") and self.subfolder:
|
|
pretrained_kwargs["subfolder"] = self.subfolder
|
|
|
|
if hasattr(self, "torch_dtype") and self.torch_dtype:
|
|
pretrained_kwargs["torch_dtype"] = self.torch_dtype
|
|
single_file_kwargs["torch_dtype"] = self.torch_dtype
|
|
|
|
model = self.model_class.from_pretrained(self.pretrained_model_name_or_path, **pretrained_kwargs)
|
|
model_single_file = self.model_class.from_single_file(self.ckpt_path, **single_file_kwargs)
|
|
|
|
state_dict = model.state_dict()
|
|
state_dict_single_file = model_single_file.state_dict()
|
|
|
|
assert set(state_dict.keys()) == set(state_dict_single_file.keys()), (
|
|
"Model parameters keys differ between pretrained and single file loading. "
|
|
f"Missing in single file: {set(state_dict.keys()) - set(state_dict_single_file.keys())}. "
|
|
f"Extra in single file: {set(state_dict_single_file.keys()) - set(state_dict.keys())}"
|
|
)
|
|
|
|
for key in state_dict.keys():
|
|
param = state_dict[key]
|
|
param_single_file = state_dict_single_file[key]
|
|
|
|
assert param.shape == param_single_file.shape, (
|
|
f"Parameter shape mismatch for {key}: "
|
|
f"pretrained {param.shape} vs single file {param_single_file.shape}"
|
|
)
|
|
|
|
assert torch.allclose(param, param_single_file, rtol=1e-5, atol=1e-5), (
|
|
f"Parameter values differ for {key}: "
|
|
f"max difference {torch.max(torch.abs(param - param_single_file)).item()}"
|
|
)
|
|
|
|
def test_single_file_loading_local_files_only(self):
|
|
single_file_kwargs = {}
|
|
|
|
if hasattr(self, "torch_dtype") and self.torch_dtype:
|
|
single_file_kwargs["torch_dtype"] = self.torch_dtype
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
pretrained_model_name_or_path, weight_name = _extract_repo_id_and_weights_name(self.ckpt_path)
|
|
local_ckpt_path = download_single_file_checkpoint(pretrained_model_name_or_path, weight_name, tmpdir)
|
|
|
|
model_single_file = self.model_class.from_single_file(
|
|
local_ckpt_path, local_files_only=True, **single_file_kwargs
|
|
)
|
|
|
|
assert model_single_file is not None, "Failed to load model with local_files_only=True"
|
|
|
|
def test_single_file_loading_with_diffusers_config(self):
|
|
single_file_kwargs = {}
|
|
|
|
if hasattr(self, "torch_dtype") and self.torch_dtype:
|
|
single_file_kwargs["torch_dtype"] = self.torch_dtype
|
|
|
|
# Load with config parameter
|
|
model_single_file = self.model_class.from_single_file(
|
|
self.ckpt_path, config=self.pretrained_model_name_or_path, **single_file_kwargs
|
|
)
|
|
|
|
# Load pretrained for comparison
|
|
pretrained_kwargs = {}
|
|
if hasattr(self, "subfolder") and self.subfolder:
|
|
pretrained_kwargs["subfolder"] = self.subfolder
|
|
if hasattr(self, "torch_dtype") and self.torch_dtype:
|
|
pretrained_kwargs["torch_dtype"] = self.torch_dtype
|
|
|
|
model = self.model_class.from_pretrained(self.pretrained_model_name_or_path, **pretrained_kwargs)
|
|
|
|
# Compare configs
|
|
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"]
|
|
for param_name, param_value in model_single_file.config.items():
|
|
if param_name in PARAMS_TO_IGNORE:
|
|
continue
|
|
assert model.config[param_name] == param_value, (
|
|
f"{param_name} differs: pretrained={model.config[param_name]}, single_file={param_value}"
|
|
)
|
|
|
|
def test_single_file_loading_with_diffusers_config_local_files_only(self):
|
|
single_file_kwargs = {}
|
|
|
|
if hasattr(self, "torch_dtype") and self.torch_dtype:
|
|
single_file_kwargs["torch_dtype"] = self.torch_dtype
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
pretrained_model_name_or_path, weight_name = _extract_repo_id_and_weights_name(self.ckpt_path)
|
|
local_ckpt_path = download_single_file_checkpoint(pretrained_model_name_or_path, weight_name, tmpdir)
|
|
local_diffusers_config = download_diffusers_config(self.pretrained_model_name_or_path, tmpdir)
|
|
|
|
model_single_file = self.model_class.from_single_file(
|
|
local_ckpt_path, config=local_diffusers_config, local_files_only=True, **single_file_kwargs
|
|
)
|
|
|
|
assert model_single_file is not None, "Failed to load model with config and local_files_only=True"
|
|
|
|
def test_single_file_loading_dtype(self):
|
|
for dtype in [torch.float32, torch.float16]:
|
|
if torch_device == "mps" and dtype == torch.bfloat16:
|
|
continue
|
|
|
|
model_single_file = self.model_class.from_single_file(self.ckpt_path, torch_dtype=dtype)
|
|
|
|
assert model_single_file.dtype == dtype, f"Expected dtype {dtype}, got {model_single_file.dtype}"
|
|
|
|
# Cleanup
|
|
del model_single_file
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def test_checkpoint_variant_loading(self):
|
|
if not hasattr(self, "alternate_ckpt_paths") or not self.alternate_ckpt_paths:
|
|
return
|
|
|
|
for ckpt_path in self.alternate_ckpt_paths:
|
|
backend_empty_cache(torch_device)
|
|
|
|
single_file_kwargs = {}
|
|
if hasattr(self, "torch_dtype") and self.torch_dtype:
|
|
single_file_kwargs["torch_dtype"] = self.torch_dtype
|
|
|
|
model = self.model_class.from_single_file(ckpt_path, **single_file_kwargs)
|
|
|
|
assert model is not None, f"Failed to load checkpoint from {ckpt_path}"
|
|
|
|
del model
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|