1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/README.md
Patrick von Platen fe3137304b improve
2022-06-06 17:03:41 +02:00

4.3 KiB

Diffusers

Definitions

Models: Single neural network that models p_θ(x_t-1|x_t) and is trained to “denoise” to image Examples: UNet, Conditioned UNet, 3D UNet, Transformer UNet

model_diff_1_50

Samplers: Algorithm to train and sample from Model. Defines alpha and beta schedule, timesteps, etc.. Example: Vanilla DDPM, DDIM, PMLS, DEIN

sampling training

Diffusion Pipeline: End-to-end pipeline that includes multiple diffusion models, possible text encoders, CLIP Example: GLIDE,CompVis/Latent-Diffusion, Imagen, DALL-E

imagen

1. diffusers as a central modular diffusion and sampler library

diffusers should be more modularized than transformers so that parts of it can be easily used in other libraries. It could become a central place for all kinds of models, samplers, training utils and processors required when using diffusion models in audio, vision, ... One should be able to save both models and samplers as well as load them from the Hub.

Example:

from diffusers import UNetModel, GaussianDDPMScheduler
import torch

# 1. Load model
unet = UNetModel.from_pretrained("fusing/ddpm_dummy")

# 2. Do one denoising step with model
batch_size, num_channels, height, width = 1, 3, 32, 32
dummy_noise = torch.ones((batch_size, num_channels, height, width))
time_step = torch.tensor([10])
image = unet(dummy_noise, time_step)

# 3. Load sampler
sampler = GaussianDDPMScheduler.from_config("fusing/ddpm_dummy")

# 4. Sample image from sampler passing the model
image = sampler.sample(model, batch_size=1)

print(image)

2. diffusers as a collection of most import Diffusion models (GLIDE, Dalle, ...)

models directory in repository hosts complete diffusion training code & pipelines. Easily load & saveable from the Hub. Will be possible to use just from pip diffusers version:

Example:

from diffusers import UNetModel, GaussianDDPMScheduler
from modeling_ddpm import DDPM
import tempfile

unet = UNetModel.from_pretrained("fusing/ddpm_dummy")
sampler = GaussianDDPMScheduler.from_config("fusing/ddpm_dummy")

# compose Diffusion Pipeline
ddpm = DDPM(unet, sampler)
# generate / sample
image = ddpm()
print(image)


# save and load with 0 extra code (handled by general `DiffusionPipeline` class)
# will also be possible to do so from the Hub
with tempfile.TemporaryDirectory() as tmpdirname:
    ddpm.save_pretrained(tmpdirname)
    print("Model saved")
    ddpm_new = DDPM.from_pretrained(tmpdirname)
    print("Model loaded")
    print(ddpm_new)

Library structure:

├── models
│   ├── audio
│   │   └── fastdiff
│   │       ├── modeling_fastdiff.py
│   │       ├── README.md
│   │       └── run_fastdiff.py
│   └── vision
│       ├── dalle2
│       │   ├── modeling_dalle2.py
│       │   ├── README.md
│       │   └── run_dalle2.py
│       ├── ddpm
│       │   ├── modeling_ddpm.py
│       │   ├── README.md
│       │   └── run_ddpm.py
│       ├── glide
│       │   ├── modeling_glide.py
│       │   ├── README.md
│       │   └── run_dalle2.py
│       ├── imagen
│       │   ├── modeling_dalle2.py
│       │   ├── README.md
│       │   └── run_dalle2.py
│       └── latent_diffusion
│           ├── modeling_latent_diffusion.py
│           ├── README.md
│           └── run_latent_diffusion.py

├── src
│   └── diffusers
│       ├── configuration_utils.py
│       ├── __init__.py
│       ├── modeling_utils.py
│       ├── models
│       │   └── unet.py
│       ├── processors
│       └── samplers
│           ├── gaussian.py
├── tests
│   └── test_modeling_utils.py