1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/examples/research_projects/autoencoderkl
Yuqian Hong 4fa24591a3 create a script to train autoencoderkl (#10605)
* create a script to train vae

* update main.py

* update train_autoencoderkl.py

* update train_autoencoderkl.py

* add a check of --pretrained_model_name_or_path and --model_config_name_or_path

* remove the comment, remove diffusers in requiremnets.txt, add validation_image ote

* update autoencoderkl.py

* quality

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-27 16:41:34 +05:30
..

AutoencoderKL training example

Installing the dependencies

Before running the scripts, make sure to install the library's training dependencies:

Important

To make sure you can successfully run the latest versions of the example scripts, we highly recommend installing from source and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:

git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .

Then cd in the example folder and run

pip install -r requirements.txt

And initialize an 🤗Accelerate environment with:

accelerate config

Training on CIFAR10

Please replace the validation image with your own image.

accelerate launch train_autoencoderkl.py \
    --pretrained_model_name_or_path stabilityai/sd-vae-ft-mse \
    --dataset_name=cifar10 \
    --image_column=img \
    --validation_image images/bird.jpg images/car.jpg images/dog.jpg images/frog.jpg \
    --num_train_epochs 100 \
    --gradient_accumulation_steps 2 \
    --learning_rate 4.5e-6 \
    --lr_scheduler cosine \
    --report_to wandb \

Training on ImageNet

accelerate launch train_autoencoderkl.py \
    --pretrained_model_name_or_path stabilityai/sd-vae-ft-mse \
    --num_train_epochs 100 \
    --gradient_accumulation_steps 2 \
    --learning_rate 4.5e-6 \
    --lr_scheduler cosine \
    --report_to wandb \
    --mixed_precision bf16 \
    --train_data_dir /path/to/ImageNet/train \
    --validation_image ./image.png \
    --decoder_only