mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
158 lines
5.3 KiB
Python
Executable File
158 lines
5.3 KiB
Python
Executable File
#!/usr/bin/env python3
|
||
from diffusers import UNetModel, GaussianDDPMScheduler
|
||
import torch
|
||
import torch.nn.functional as F
|
||
import numpy as np
|
||
import PIL.Image
|
||
import tqdm
|
||
|
||
#torch_device = "cuda"
|
||
#
|
||
#unet = UNetModel.from_pretrained("/home/patrick/ddpm-lsun-church")
|
||
#unet.to(torch_device)
|
||
#
|
||
#TIME_STEPS = 10
|
||
#
|
||
#scheduler = GaussianDDPMScheduler.from_config("/home/patrick/ddpm-lsun-church", timesteps=TIME_STEPS)
|
||
#
|
||
#diffusion_config = {
|
||
# "beta_start": 0.0001,
|
||
# "beta_end": 0.02,
|
||
# "num_diffusion_timesteps": TIME_STEPS,
|
||
#}
|
||
#
|
||
# 2. Do one denoising step with model
|
||
#batch_size, num_channels, height, width = 1, 3, 256, 256
|
||
#
|
||
#torch.manual_seed(0)
|
||
#noise_image = torch.randn(batch_size, num_channels, height, width, device="cuda")
|
||
#
|
||
#
|
||
# Helper
|
||
#def noise_like(shape, device, repeat=False):
|
||
# def repeat_noise():
|
||
# return torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
||
#
|
||
# def noise():
|
||
# return torch.randn(shape, device=device)
|
||
#
|
||
# return repeat_noise() if repeat else noise()
|
||
#
|
||
#
|
||
#betas = np.linspace(diffusion_config["beta_start"], diffusion_config["beta_end"], diffusion_config["num_diffusion_timesteps"], dtype=np.float64)
|
||
#betas = torch.tensor(betas, device=torch_device)
|
||
#alphas = 1.0 - betas
|
||
#
|
||
#alphas_cumprod = torch.cumprod(alphas, axis=0)
|
||
#alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
|
||
#
|
||
#posterior_mean_coef1 = betas * torch.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)
|
||
#posterior_mean_coef2 = (1.0 - alphas_cumprod_prev) * torch.sqrt(alphas) / (1.0 - alphas_cumprod)
|
||
#
|
||
#posterior_variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
|
||
#posterior_log_variance_clipped = torch.log(posterior_variance.clamp(min=1e-20))
|
||
#
|
||
#
|
||
#sqrt_recip_alphas_cumprod = torch.sqrt(1.0 / alphas_cumprod)
|
||
#sqrt_recipm1_alphas_cumprod = torch.sqrt(1.0 / alphas_cumprod - 1)
|
||
#
|
||
#
|
||
#noise_coeff = (1 - alphas) / torch.sqrt(1 - alphas_cumprod)
|
||
#coeff = 1 / torch.sqrt(alphas)
|
||
|
||
|
||
def real_fn():
|
||
# Compare the following to Algorithm 2 Sampling of paper: https://arxiv.org/pdf/2006.11239.pdf
|
||
# 1: x_t ~ N(0,1)
|
||
x_t = noise_image
|
||
# 2: for t = T, ...., 1 do
|
||
for i in reversed(range(TIME_STEPS)):
|
||
t = torch.tensor([i]).to(torch_device)
|
||
# 3: z ~ N(0, 1)
|
||
noise = noise_like(x_t.shape, torch_device)
|
||
|
||
# 4: √1αtxt − √1−αt1−α¯tθ(xt, t) + σtz
|
||
# ------------------------- MODEL ------------------------------------#
|
||
with torch.no_grad():
|
||
pred_noise = unet(x_t, t) # pred epsilon_theta
|
||
|
||
# pred_x = sqrt_recip_alphas_cumprod[t] * x_t - sqrt_recipm1_alphas_cumprod[t] * pred_noise
|
||
# pred_x.clamp_(-1.0, 1.0)
|
||
# pred mean
|
||
# posterior_mean = posterior_mean_coef1[t] * pred_x + posterior_mean_coef2[t] * x_t
|
||
# --------------------------------------------------------------------#
|
||
|
||
posterior_mean = coeff[t] * (x_t - noise_coeff[t] * pred_noise)
|
||
|
||
# ------------------------- Variance Scheduler -----------------------#
|
||
# pred variance
|
||
posterior_log_variance = posterior_log_variance_clipped[t]
|
||
|
||
b, *_, device = *x_t.shape, x_t.device
|
||
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x_t.shape) - 1)))
|
||
posterior_variance = nonzero_mask * (0.5 * posterior_log_variance).exp()
|
||
# --------------------------------------------------------------------#
|
||
|
||
x_t_1 = (posterior_mean + posterior_variance * noise).to(torch.float32)
|
||
x_t = x_t_1
|
||
|
||
print(x_t.abs().sum())
|
||
|
||
|
||
def post_process_to_image(x_t):
|
||
image = x_t.cpu().permute(0, 2, 3, 1)
|
||
image = (image + 1.0) * 127.5
|
||
image = image.numpy().astype(np.uint8)
|
||
|
||
return PIL.Image.fromarray(image[0])
|
||
|
||
|
||
from pytorch_diffusion import Diffusion
|
||
|
||
#diffusion = Diffusion.from_pretrained("lsun_church")
|
||
#samples = diffusion.denoise(1)
|
||
#
|
||
#image = post_process_to_image(samples)
|
||
#image.save("check.png")
|
||
#import ipdb; ipdb.set_trace()
|
||
|
||
|
||
device = "cuda"
|
||
scheduler = GaussianDDPMScheduler.from_config("/home/patrick/ddpm-lsun-church", timesteps=10)
|
||
|
||
import ipdb; ipdb.set_trace()
|
||
|
||
model = UNetModel.from_pretrained("/home/patrick/ddpm-lsun-church").to(device)
|
||
|
||
|
||
torch.manual_seed(0)
|
||
next_image = scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=device)
|
||
|
||
for t in tqdm.tqdm(reversed(range(len(scheduler))), total=len(scheduler)):
|
||
# define coefficients for time step t
|
||
clip_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
|
||
clip_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
|
||
image_coeff = (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t))
|
||
clip_coeff = torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
|
||
|
||
# predict noise residual
|
||
with torch.no_grad():
|
||
noise_residual = model(next_image, t)
|
||
|
||
# compute prev image from noise
|
||
pred_mean = clip_image_coeff * next_image - clip_noise_coeff * noise_residual
|
||
pred_mean = torch.clamp(pred_mean, -1, 1)
|
||
image = clip_coeff * pred_mean + image_coeff * next_image
|
||
|
||
# sample variance
|
||
variance = scheduler.sample_variance(t, image.shape, device=device)
|
||
|
||
# sample previous image
|
||
sampled_image = image + variance
|
||
|
||
next_image = sampled_image
|
||
|
||
|
||
image = post_process_to_image(next_image)
|
||
image.save("example_new.png")
|