1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/docs/source/_toctree.yml
Will Berman ef2ea33c3b VQ-diffusion (#658)
* Changes for VQ-diffusion VQVAE

Add specify dimension of embeddings to VQModel:
`VQModel` will by default set the dimension of embeddings to the number
of latent channels. The VQ-diffusion VQVAE has a smaller
embedding dimension, 128, than number of latent channels, 256.

Add AttnDownEncoderBlock2D and AttnUpDecoderBlock2D to the up and down
unet block helpers. VQ-diffusion's VQVAE uses those two block types.

* Changes for VQ-diffusion transformer

Modify attention.py so SpatialTransformer can be used for
VQ-diffusion's transformer.

SpatialTransformer:
- Can now operate over discrete inputs (classes of vector embeddings) as well as continuous.
- `in_channels` was made optional in the constructor so two locations where it was passed as a positional arg were moved to kwargs
- modified forward pass to take optional timestep embeddings

ImagePositionalEmbeddings:
- added to provide positional embeddings to discrete inputs for latent pixels

BasicTransformerBlock:
- norm layers were made configurable so that the VQ-diffusion could use AdaLayerNorm with timestep embeddings
- modified forward pass to take optional timestep embeddings

CrossAttention:
- now may optionally take a bias parameter for its query, key, and value linear layers

FeedForward:
- Internal layers are now configurable

ApproximateGELU:
- Activation function in VQ-diffusion's feedforward layer

AdaLayerNorm:
- Norm layer modified to incorporate timestep embeddings

* Add VQ-diffusion scheduler

* Add VQ-diffusion pipeline

* Add VQ-diffusion convert script to diffusers

* Add VQ-diffusion dummy objects

* Add VQ-diffusion markdown docs

* Add VQ-diffusion tests

* some renaming

* some fixes

* more renaming

* correct

* fix typo

* correct weights

* finalize

* fix tests

* Apply suggestions from code review

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* finish

* finish

* up

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-11-03 16:10:28 +01:00

105 lines
3.2 KiB
YAML

- sections:
- local: index
title: "🧨 Diffusers"
- local: quicktour
title: "Quicktour"
- local: installation
title: "Installation"
title: "Get started"
- sections:
- sections:
- local: using-diffusers/loading
title: "Loading Pipelines, Models, and Schedulers"
- local: using-diffusers/configuration
title: "Configuring Pipelines, Models, and Schedulers"
- local: using-diffusers/custom_pipeline_overview
title: "Loading and Adding Custom Pipelines"
title: "Loading & Hub"
- sections:
- local: using-diffusers/unconditional_image_generation
title: "Unconditional Image Generation"
- local: using-diffusers/conditional_image_generation
title: "Text-to-Image Generation"
- local: using-diffusers/img2img
title: "Text-Guided Image-to-Image"
- local: using-diffusers/inpaint
title: "Text-Guided Image-Inpainting"
- local: using-diffusers/custom_pipeline_examples
title: "Community Pipelines"
- local: using-diffusers/contribute_pipeline
title: "How to contribute a Pipeline"
title: "Pipelines for Inference"
title: "Using Diffusers"
- sections:
- local: optimization/fp16
title: "Memory and Speed"
- local: optimization/onnx
title: "ONNX"
- local: optimization/open_vino
title: "OpenVINO"
- local: optimization/mps
title: "MPS"
title: "Optimization/Special Hardware"
- sections:
- local: training/overview
title: "Overview"
- local: training/unconditional_training
title: "Unconditional Image Generation"
- local: training/text_inversion
title: "Textual Inversion"
- local: training/dreambooth
title: "Dreambooth"
- local: training/text2image
title: "Text-to-image fine-tuning"
title: "Training"
- sections:
- local: conceptual/stable_diffusion
title: "Stable Diffusion"
- local: conceptual/philosophy
title: "Philosophy"
- local: conceptual/contribution
title: "How to contribute?"
title: "Conceptual Guides"
- sections:
- sections:
- local: api/models
title: "Models"
- local: api/schedulers
title: "Schedulers"
- local: api/diffusion_pipeline
title: "Diffusion Pipeline"
- local: api/logging
title: "Logging"
- local: api/configuration
title: "Configuration"
- local: api/outputs
title: "Outputs"
title: "Main Classes"
- sections:
- local: api/pipelines/overview
title: "Overview"
- local: api/pipelines/ddim
title: "DDIM"
- local: api/pipelines/ddpm
title: "DDPM"
- local: api/pipelines/latent_diffusion
title: "Latent Diffusion"
- local: api/pipelines/latent_diffusion_uncond
title: "Unconditional Latent Diffusion"
- local: api/pipelines/pndm
title: "PNDM"
- local: api/pipelines/score_sde_ve
title: "Score SDE VE"
- local: api/pipelines/stable_diffusion
title: "Stable Diffusion"
- local: api/pipelines/stochastic_karras_ve
title: "Stochastic Karras VE"
- local: api/pipelines/dance_diffusion
title: "Dance Diffusion"
- local: api/pipelines/vq_diffusion
title: "VQ Diffusion"
- local: api/pipelines/repaint
title: "RePaint"
title: "Pipelines"
title: "API"