1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Files
diffusers/go.diff
2025-06-09 10:25:45 +05:30

219 lines
8.6 KiB
Diff

diff --git a/diffusers/hooks/offload.py b/diffusers/hooks/offload.py
--- a/diffusers/hooks/offload.py
+++ b/diffusers/hooks/offload.py
@@ -1,6 +1,10 @@
import os
-import torch
+import torch
+from safetensors.torch import save_file, load_file
+import os
from typing import Optional, Union
from torch import nn
from .module_group import ModuleGroup
@@ -25,6 +29,32 @@ from .hooks import HookRegistry
from .hooks import GroupOffloadingHook, LazyPrefetchGroupOffloadingHook
+# -------------------------------------------------------------------------------
+# Helpers for disk/NVMe offload using safetensors
+# -------------------------------------------------------------------------------
+def _offload_tensor_to_disk_st(tensor: torch.Tensor, path: str) -> None:
+ """
+ Serialize a tensor out to disk in safetensors format.
+ We pin the CPU copy so that non_blocking loads can overlap copy/compute.
+ """
+ os.makedirs(os.path.dirname(path), exist_ok=True)
+ cpu_t = tensor.detach().cpu().pin_memory()
+ save_file({"0": cpu_t}, path)
+ # free the original GPU tensor immediately
+ del tensor
+
+def _load_tensor_from_disk_st(
+ path: str, device: torch.device, non_blocking: bool
+) -> torch.Tensor:
+ """
+ Load a tensor back in with safetensors.
+ - If non_blocking on CUDA: load to CPU pinned memory, then .to(cuda, non_blocking=True).
+ - Otherwise: direct load_file(device=...).
+ """
+ # fast path: direct to target device
+ if not (non_blocking and device.type == "cuda"):
+ data = load_file(path, device=device)
+ return data["0"]
+ # pinned-CPU fallback for true non-blocking
+ data = load_file(path, device="cpu")
+ cpu_t = data["0"]
+ return cpu_t.to(device, non_blocking=True)
+
+
def apply_group_offloading(
module: torch.nn.Module,
onload_device: torch.device,
- offload_device: torch.device = torch.device("cpu"),
- offload_type: str = "block_level",
+ offload_device: torch.device = torch.device("cpu"),
+ *,
+ offload_to_disk: bool = False,
+ offload_path: Optional[str] = None,
+ offload_type: str = "block_level",
num_blocks_per_group: Optional[int] = None,
non_blocking: bool = False,
use_stream: bool = False,
@@ -37,6 +67,10 @@ def apply_group_offloading(
Example:
```python
>>> apply_group_offloading(... )
+ # to store params on NVMe:
+ >>> apply_group_offloading(
+ ... model,
+ ... onload_device=torch.device("cuda"),
+ ... offload_to_disk=True,
+ ... offload_path="/mnt/nvme1/offload",
+ ... offload_type="block_level",
+ ... num_blocks_per_group=1,
+ ... )
```
"""
@@ -69,6 +103,10 @@ def apply_group_offloading(
if num_blocks_per_group is None:
raise ValueError("num_blocks_per_group must be provided when using offload_type='block_level'.")
+ if offload_to_disk and offload_path is None:
+ raise ValueError("`offload_path` must be set when `offload_to_disk=True`.")
_apply_group_offloading_block_level(
module=module,
+ offload_to_disk=offload_to_disk,
+ offload_path=offload_path,
num_blocks_per_group=num_blocks_per_group,
offload_device=offload_device,
onload_device=onload_device,
@@ -79,6 +117,11 @@ def apply_group_offloading(
elif offload_type == "leaf_level":
+ if offload_to_disk and offload_path is None:
+ raise ValueError("`offload_path` must be set when `offload_to_disk=True`.")
_apply_group_offloading_leaf_level(
module=module,
+ offload_to_disk=offload_to_disk,
+ offload_path=offload_path,
offload_device=offload_device,
onload_device=onload_device,
non_blocking=non_blocking,
@@ -107,10 +150,16 @@ def _apply_group_offloading_block_level(
"""
- module: torch.nn.Module,
- num_blocks_per_group: int,
- offload_device: torch.device,
- onload_device: torch.device,
+ module: torch.nn.Module,
+ num_blocks_per_group: int,
+ offload_device: torch.device,
+ offload_to_disk: bool,
+ offload_path: Optional[str],
+ onload_device: torch.device,
non_blocking: bool,
stream: Union[torch.cuda.Stream, torch.Stream, None] = None,
record_stream: Optional[bool] = False,
low_cpu_mem_usage: bool = False,
) -> None:
@@ -138,7 +187,9 @@ def _apply_group_offloading_block_level(
for i in range(0, len(submodule), num_blocks_per_group):
current_modules = submodule[i : i + num_blocks_per_group]
group = ModuleGroup(
- modules=current_modules,
+ modules=current_modules,
+ offload_to_disk=offload_to_disk,
+ offload_path=offload_path,
offload_device=offload_device,
onload_device=onload_device,
offload_leader=current_modules[-1],
@@ -187,10 +238,14 @@ def _apply_group_offloading_block_level(
unmatched_group = ModuleGroup(
modules=unmatched_modules,
- offload_device=offload_device,
+ offload_to_disk=offload_to_disk,
+ offload_path=offload_path,
+ offload_device=offload_device,
onload_device=onload_device,
offload_leader=module,
onload_leader=module,
+ # other args omitted for brevity...
)
if stream is None:
@@ -216,10 +271,16 @@ def _apply_group_offloading_leaf_level(
"""
- module: torch.nn.Module,
- offload_device: torch.device,
- onload_device: torch.device,
- non_blocking: bool,
+ module: torch.nn.Module,
+ offload_device: torch.device,
+ offload_to_disk: bool,
+ offload_path: Optional[str],
+ onload_device: torch.device,
+ non_blocking: bool,
stream: Union[torch.cuda.Stream, torch.Stream, None] = None,
record_stream: Optional[bool] = False,
low_cpu_mem_usage: bool = False,
) -> None:
@@ -229,7 +290,9 @@ def _apply_group_offloading_leaf_level(
for name, submodule in module.named_modules():
if not isinstance(submodule, _SUPPORTED_PYTORCH_LAYERS):
continue
- group = ModuleGroup(
+ group = ModuleGroup(
+ offload_to_disk=offload_to_disk,
+ offload_path=offload_path,
modules=[submodule],
offload_device=offload_device,
onload_device=onload_device,
@@ -317,10 +380,14 @@ def _apply_group_offloading_leaf_level(
parent_module = module_dict[name]
assert getattr(parent_module, "_diffusers_hook", None) is None
- group = ModuleGroup(
+ group = ModuleGroup(
+ offload_to_disk=offload_to_disk,
+ offload_path=offload_path,
modules=[],
offload_device=offload_device,
onload_device=onload_device,
+ # additional args omitted for brevity...
)
_apply_group_offloading_hook(parent_module, group, None)
@@ -360,6 +427,38 @@ def _apply_lazy_group_offloading_hook(
registry.register_hook(lazy_prefetch_hook, _LAZY_PREFETCH_GROUP_OFFLOADING)
+# -------------------------------------------------------------------------------
+# Patch GroupOffloadingHook to use safetensors disk offload
+# -------------------------------------------------------------------------------
+class GroupOffloadingHook:
+ def __init__(self, group: ModuleGroup, next_group: Optional[ModuleGroup]):
+ self.group = group
+ self.next_group = next_group
+ # map param/buffer name -> file path
+ self.param_to_path: Dict[str,str] = {}
+ self.buffer_to_path: Dict[str,str] = {}
+
+ def offload_parameters(self, module: nn.Module):
+ for name, param in module.named_parameters(recurse=False):
+ if self.group.offload_to_disk:
+ path = os.path.join(self.group.offload_path, f"{module.__class__.__name__}__{name}.safetensors")
+ _offload_tensor_to_disk_st(param.data, path)
+ self.param_to_path[name] = path
+ else:
+ param.data = param.data.to(self.group.offload_device, non_blocking=self.group.non_blocking)
+
+ def onload_parameters(self, module: nn.Module):
+ for name, param in module.named_parameters(recurse=False):
+ if self.group.offload_to_disk:
+ path = self.param_to_path[name]
+ param.data = _load_tensor_from_disk_st(path, self.group.onload_device, self.group.non_blocking)
+ else:
+ param.data = param.data.to(self.group.onload_device, non_blocking=self.group.non_blocking)
+
+ # analogous changes for buffers...
+