mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* Adding `use_safetensors` argument to give more control to users about which weights they use. * Doc style. * Rebased (not functional). * Rebased and functional with tests. * Style. * Apply suggestions from code review * Style. * Addressing comments. * Update tests/test_pipelines.py Co-authored-by: Will Berman <wlbberman@gmail.com> * Black ??? --------- Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by: Will Berman <wlbberman@gmail.com>
297 lines
13 KiB
Python
297 lines
13 KiB
Python
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from collections import defaultdict
|
|
from typing import Callable, Dict, Union
|
|
|
|
import torch
|
|
|
|
from .models.attention_processor import LoRAAttnProcessor
|
|
from .models.modeling_utils import _get_model_file
|
|
from .utils import DIFFUSERS_CACHE, HF_HUB_OFFLINE, deprecate, is_safetensors_available, logging
|
|
|
|
|
|
if is_safetensors_available():
|
|
import safetensors
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
|
|
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
|
|
|
|
|
|
class AttnProcsLayers(torch.nn.Module):
|
|
def __init__(self, state_dict: Dict[str, torch.Tensor]):
|
|
super().__init__()
|
|
self.layers = torch.nn.ModuleList(state_dict.values())
|
|
self.mapping = {k: v for k, v in enumerate(state_dict.keys())}
|
|
self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
|
|
|
|
# we add a hook to state_dict() and load_state_dict() so that the
|
|
# naming fits with `unet.attn_processors`
|
|
def map_to(module, state_dict, *args, **kwargs):
|
|
new_state_dict = {}
|
|
for key, value in state_dict.items():
|
|
num = int(key.split(".")[1]) # 0 is always "layers"
|
|
new_key = key.replace(f"layers.{num}", module.mapping[num])
|
|
new_state_dict[new_key] = value
|
|
|
|
return new_state_dict
|
|
|
|
def map_from(module, state_dict, *args, **kwargs):
|
|
all_keys = list(state_dict.keys())
|
|
for key in all_keys:
|
|
replace_key = key.split(".processor")[0] + ".processor"
|
|
new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
|
|
state_dict[new_key] = state_dict[key]
|
|
del state_dict[key]
|
|
|
|
self._register_state_dict_hook(map_to)
|
|
self._register_load_state_dict_pre_hook(map_from, with_module=True)
|
|
|
|
|
|
class UNet2DConditionLoadersMixin:
|
|
def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
|
|
r"""
|
|
Load pretrained attention processor layers into `UNet2DConditionModel`. Attention processor layers have to be
|
|
defined in
|
|
[cross_attention.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py)
|
|
and be a `torch.nn.Module` class.
|
|
|
|
<Tip warning={true}>
|
|
|
|
This function is experimental and might change in the future.
|
|
|
|
</Tip>
|
|
|
|
Parameters:
|
|
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
|
|
Can be either:
|
|
|
|
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
|
Valid model ids should have an organization name, like `google/ddpm-celebahq-256`.
|
|
- A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g.,
|
|
`./my_model_directory/`.
|
|
- A [torch state
|
|
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
|
|
|
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
|
standard cache should not be used.
|
|
force_download (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
|
cached versions if they exist.
|
|
resume_download (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
|
|
file exists.
|
|
proxies (`Dict[str, str]`, *optional*):
|
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
|
local_files_only(`bool`, *optional*, defaults to `False`):
|
|
Whether or not to only look at local files (i.e., do not try to download the model).
|
|
use_auth_token (`str` or *bool*, *optional*):
|
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
|
when running `diffusers-cli login` (stored in `~/.huggingface`).
|
|
revision (`str`, *optional*, defaults to `"main"`):
|
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
|
identifier allowed by git.
|
|
subfolder (`str`, *optional*, defaults to `""`):
|
|
In case the relevant files are located inside a subfolder of the model repo (either remote in
|
|
huggingface.co or downloaded locally), you can specify the folder name here.
|
|
|
|
mirror (`str`, *optional*):
|
|
Mirror source to accelerate downloads in China. If you are from China and have an accessibility
|
|
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
|
|
Please refer to the mirror site for more information.
|
|
|
|
<Tip>
|
|
|
|
It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
|
|
models](https://huggingface.co/docs/hub/models-gated#gated-models).
|
|
|
|
</Tip>
|
|
|
|
<Tip>
|
|
|
|
Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use
|
|
this method in a firewalled environment.
|
|
|
|
</Tip>
|
|
"""
|
|
|
|
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
|
force_download = kwargs.pop("force_download", False)
|
|
resume_download = kwargs.pop("resume_download", False)
|
|
proxies = kwargs.pop("proxies", None)
|
|
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
|
use_auth_token = kwargs.pop("use_auth_token", None)
|
|
revision = kwargs.pop("revision", None)
|
|
subfolder = kwargs.pop("subfolder", None)
|
|
weight_name = kwargs.pop("weight_name", None)
|
|
use_safetensors = kwargs.pop("use_safetensors", None)
|
|
|
|
if use_safetensors and not is_safetensors_available():
|
|
raise ValueError(
|
|
"`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetenstors"
|
|
)
|
|
|
|
allow_pickle = False
|
|
if use_safetensors is None:
|
|
use_safetensors = is_safetensors_available()
|
|
allow_pickle = True
|
|
|
|
user_agent = {
|
|
"file_type": "attn_procs_weights",
|
|
"framework": "pytorch",
|
|
}
|
|
|
|
model_file = None
|
|
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
|
# Let's first try to load .safetensors weights
|
|
if (use_safetensors and weight_name is None) or (
|
|
weight_name is not None and weight_name.endswith(".safetensors")
|
|
):
|
|
try:
|
|
model_file = _get_model_file(
|
|
pretrained_model_name_or_path_or_dict,
|
|
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
|
|
cache_dir=cache_dir,
|
|
force_download=force_download,
|
|
resume_download=resume_download,
|
|
proxies=proxies,
|
|
local_files_only=local_files_only,
|
|
use_auth_token=use_auth_token,
|
|
revision=revision,
|
|
subfolder=subfolder,
|
|
user_agent=user_agent,
|
|
)
|
|
state_dict = safetensors.torch.load_file(model_file, device="cpu")
|
|
except IOError as e:
|
|
if not allow_pickle:
|
|
raise e
|
|
# try loading non-safetensors weights
|
|
pass
|
|
if model_file is None:
|
|
model_file = _get_model_file(
|
|
pretrained_model_name_or_path_or_dict,
|
|
weights_name=weight_name or LORA_WEIGHT_NAME,
|
|
cache_dir=cache_dir,
|
|
force_download=force_download,
|
|
resume_download=resume_download,
|
|
proxies=proxies,
|
|
local_files_only=local_files_only,
|
|
use_auth_token=use_auth_token,
|
|
revision=revision,
|
|
subfolder=subfolder,
|
|
user_agent=user_agent,
|
|
)
|
|
state_dict = torch.load(model_file, map_location="cpu")
|
|
else:
|
|
state_dict = pretrained_model_name_or_path_or_dict
|
|
|
|
# fill attn processors
|
|
attn_processors = {}
|
|
|
|
is_lora = all("lora" in k for k in state_dict.keys())
|
|
|
|
if is_lora:
|
|
lora_grouped_dict = defaultdict(dict)
|
|
for key, value in state_dict.items():
|
|
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
|
|
lora_grouped_dict[attn_processor_key][sub_key] = value
|
|
|
|
for key, value_dict in lora_grouped_dict.items():
|
|
rank = value_dict["to_k_lora.down.weight"].shape[0]
|
|
cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1]
|
|
hidden_size = value_dict["to_k_lora.up.weight"].shape[0]
|
|
|
|
attn_processors[key] = LoRAAttnProcessor(
|
|
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=rank
|
|
)
|
|
attn_processors[key].load_state_dict(value_dict)
|
|
|
|
else:
|
|
raise ValueError(f"{model_file} does not seem to be in the correct format expected by LoRA training.")
|
|
|
|
# set correct dtype & device
|
|
attn_processors = {k: v.to(device=self.device, dtype=self.dtype) for k, v in attn_processors.items()}
|
|
|
|
# set layers
|
|
self.set_attn_processor(attn_processors)
|
|
|
|
def save_attn_procs(
|
|
self,
|
|
save_directory: Union[str, os.PathLike],
|
|
is_main_process: bool = True,
|
|
weight_name: str = None,
|
|
save_function: Callable = None,
|
|
safe_serialization: bool = False,
|
|
**kwargs,
|
|
):
|
|
r"""
|
|
Save an attention processor to a directory, so that it can be re-loaded using the
|
|
`[`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`]` method.
|
|
|
|
Arguments:
|
|
save_directory (`str` or `os.PathLike`):
|
|
Directory to which to save. Will be created if it doesn't exist.
|
|
is_main_process (`bool`, *optional*, defaults to `True`):
|
|
Whether the process calling this is the main process or not. Useful when in distributed training like
|
|
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
|
|
the main process to avoid race conditions.
|
|
save_function (`Callable`):
|
|
The function to use to save the state dictionary. Useful on distributed training like TPUs when one
|
|
need to replace `torch.save` by another method. Can be configured with the environment variable
|
|
`DIFFUSERS_SAVE_MODE`.
|
|
"""
|
|
weight_name = weight_name or deprecate(
|
|
"weights_name",
|
|
"0.18.0",
|
|
"`weights_name` is deprecated, please use `weight_name` instead.",
|
|
take_from=kwargs,
|
|
)
|
|
if os.path.isfile(save_directory):
|
|
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
|
|
return
|
|
|
|
if save_function is None:
|
|
if safe_serialization:
|
|
|
|
def save_function(weights, filename):
|
|
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})
|
|
|
|
else:
|
|
save_function = torch.save
|
|
|
|
os.makedirs(save_directory, exist_ok=True)
|
|
|
|
model_to_save = AttnProcsLayers(self.attn_processors)
|
|
|
|
# Save the model
|
|
state_dict = model_to_save.state_dict()
|
|
|
|
if weight_name is None:
|
|
if safe_serialization:
|
|
weight_name = LORA_WEIGHT_NAME_SAFE
|
|
else:
|
|
weight_name = LORA_WEIGHT_NAME
|
|
|
|
# Save the model
|
|
save_function(state_dict, os.path.join(save_directory, weight_name))
|
|
|
|
logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
|