1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Files
diffusers/docs/source/en/api/pipelines/semantic_stable_diffusion.md
Manuel Brack 00eca4b887 [Pipeline] Add LEDITS++ pipelines (#6074)
* Setup LEdits++ file structure

* Fix import

* LEditsPP Stable Diffusion pipeline

* Include variable image aspect ratios

* Implement LEDITS++ for SDXL

* clean up LEditsPPPipelineStableDiffusion

* Adjust inversion output

* Added docu, more cleanup for LEditsPPPipelineStableDiffusion

* clean up LEditsPPPipelineStableDiffusionXL

* Update documentation

* Fix documentation import

* Add skeleton IF implementation

* Fix documentation typo

* Add LEDTIS docu to toctree

* Add missing title

* Finalize SD documentation

* Finalize SD-XL documentation

* Fix code style and quality

* Fix typo

* Fix return types

* added LEditsPPPipelineIF; minor changes for LEditsPPPipelineStableDiffusion and LEditsPPPipelineStableDiffusionXL

* Fix copy reference

* add documentation for IF

* Add first tests

* Fix batching for SD-XL

* Fix text encoding and perfect reconstruction for SD-XL

* Add tests for SD-XL, minor changes

* move user_mask to correct device, use cross_attention_kwargs also for inversion

* Example docstring

* Fix attention resolution for non-square images

* Refactoring for PR review

* Safely remove ledits_utils.py

* Style fixes

* Replace assertions with ValueError

* Remove LEditsPPPipelineIF

* Remove unecessary input checks

* Refactoring of CrossAttnProcessor

* Revert unecessary changes to scheduler

* Remove first progress-bar in inversion

* Refactor scheduler usage and reset

* Use imageprocessor instead of custom logic

* Fix scheduler init warning

* Fix error when running the pipeline in fp16

* Update documentation wrt perfect inversion

* Update tests

* Fix code quality and copy consistency

* Update LEditsPP import

* Remove enable/disable methods that are now in StableDiffusionMixin

* Change import in docs

* Revert import structure change

* Fix ledits imports

---------

Co-authored-by: Katharina Kornmeier <katharina.kornmeier@stud.tu-darmstadt.de>
2024-03-13 12:43:47 +02:00

2.7 KiB

Semantic Guidance

Semantic Guidance for Diffusion Models was proposed in SEGA: Instructing Text-to-Image Models using Semantic Guidance and provides strong semantic control over image generation. Small changes to the text prompt usually result in entirely different output images. However, with SEGA a variety of changes to the image are enabled that can be controlled easily and intuitively, while staying true to the original image composition.

The abstract from the paper is:

Text-to-image diffusion models have recently received a lot of interest for their astonishing ability to produce high-fidelity images from text only. However, achieving one-shot generation that aligns with the user's intent is nearly impossible, yet small changes to the input prompt often result in very different images. This leaves the user with little semantic control. To put the user in control, we show how to interact with the diffusion process to flexibly steer it along semantic directions. This semantic guidance (SEGA) generalizes to any generative architecture using classifier-free guidance. More importantly, it allows for subtle and extensive edits, changes in composition and style, as well as optimizing the overall artistic conception. We demonstrate SEGA's effectiveness on both latent and pixel-based diffusion models such as Stable Diffusion, Paella, and DeepFloyd-IF using a variety of tasks, thus providing strong evidence for its versatility, flexibility, and improvements over existing methods.

Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.

SemanticStableDiffusionPipeline

autodoc SemanticStableDiffusionPipeline - all - call

SemanticStableDiffusionPipelineOutput

autodoc pipelines.semantic_stable_diffusion.pipeline_output.SemanticStableDiffusionPipelineOutput - all