1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/docs/source/en/modular_diffusers/custom_blocks.md
2025-10-08 13:53:59 +05:30

12 KiB

Building custom blocks

ModularPipelineBlocks are the fundamental building blocks for a [ModularPipeline]. As long as they contain the appropriate inputs, outputs, and computation logic, you can customize these blocks to create custom blocks.

This guide will show you how to create and use a custom block.

First let's take a look at the structure of our custom block project:

.
├── block.py
└── modular_config.json

The code to define the custom block lives in a file called block.py. The modular_config.json file contains metadata for loading the block with Modular Diffusers.

In this example, we will create a custom block that uses the Florence 2 model to process an input image and generate a mask for inpainting

from typing import List, Union
from PIL import Image, ImageDraw
import torch
import numpy as np

from diffusers.modular_pipelines import (
    PipelineState,
    ModularPipelineBlocks,
    InputParam,
    ComponentSpec,
    OutputParam,
)
from transformers import AutoProcessor, Florence2ForConditionalGeneration


class Florence2ImageAnnotatorBlock(ModularPipelineBlocks):
    @property
    def expected_components(self):
        return [
            ComponentSpec(
                name="image_annotator",
                type_hint=Florence2ForConditionalGeneration,
                repo="florence-community/Florence-2-base-ft",
            ),
            ComponentSpec(
                name="image_annotator_processor",
                type_hint=AutoProcessor,
                repo="florence-community/Florence-2-base-ft",
            ),
        ]

    @property
    def inputs(self) -> List[InputParam]:
        return [
            InputParam(
                "image",
                type_hint=Union[Image.Image, List[Image.Image]],
                required=True,
                description="Image(s) to annotate",
            ),
            InputParam(
                "annotation_task",
                type_hint=Union[str, List[str]],
                required=True,
                default="<REFERRING_EXPRESSION_SEGMENTATION>",
                description="""Annotation Task to perform on the image.
                Supported Tasks:

                <OD>
                <REFERRING_EXPRESSION_SEGMENTATION>
                <CAPTION>
                <DETAILED_CAPTION>
                <MORE_DETAILED_CAPTION>
                <DENSE_REGION_CAPTION>
                <CAPTION_TO_PHRASE_GROUNDING>
                <OPEN_VOCABULARY_DETECTION>

                """,
            ),
            InputParam(
                "annotation_prompt",
                type_hint=Union[str, List[str]],
                required=True,
                description="""Annotation Prompt to provide more context to the task.
                Can be used to detect or segment out specific elements in the image
                """,
            ),
            InputParam(
                "annotation_output_type",
                type_hint=str,
                required=True,
                default="mask_image",
                description="""Output type from annotation predictions. Availabe options are
                mask_image:
                    -black and white mask image for the given image based on the task type
                mask_overlay:
                    - mask overlayed on the original image
                bounding_box:
                    - bounding boxes drawn on the original image
                """,
            ),
            InputParam(
                "annotation_overlay",
                type_hint=bool,
                required=True,
                default=False,
                description="",
            ),
        ]

    @property
    def intermediate_outputs(self) -> List[OutputParam]:
        return [
            OutputParam(
                "mask_image",
                type_hint=Image,
                description="Inpainting Mask for input Image(s)",
            ),
            OutputParam(
                "annotations",
                type_hint=dict,
                description="Annotations Predictions for input Image(s)",
            ),
            OutputParam(
                "image",
                type_hint=Image,
                description="Annotated input Image(s)",
            ),
        ]

    def get_annotations(self, components, images, prompts, task):
        task_prompts = [task + prompt for prompt in prompts]

        inputs = components.image_annotator_processor(
            text=task_prompts, images=images, return_tensors="pt"
        ).to(components.image_annotator.device, components.image_annotator.dtype)

        generated_ids = components.image_annotator.generate(
            input_ids=inputs["input_ids"],
            pixel_values=inputs["pixel_values"],
            max_new_tokens=1024,
            early_stopping=False,
            do_sample=False,
            num_beams=3,
        )
        annotations = components.image_annotator_processor.batch_decode(
            generated_ids, skip_special_tokens=False
        )
        outputs = []
        for image, annotation in zip(images, annotations):
            outputs.append(
                components.image_annotator_processor.post_process_generation(
                    annotation, task=task, image_size=(image.width, image.height)
                )
            )
        return outputs

    def prepare_mask(self, images, annotations, overlay=False, fill="white"):
        masks = []
        for image, annotation in zip(images, annotations):
            mask_image = image.copy() if overlay else Image.new("L", image.size, 0)
            draw = ImageDraw.Draw(mask_image)

            for _, _annotation in annotation.items():
                if "polygons" in _annotation:
                    for polygon in _annotation["polygons"]:
                        polygon = np.array(polygon).reshape(-1, 2)
                        if len(polygon) < 3:
                            continue
                        polygon = polygon.reshape(-1).tolist()
                        draw.polygon(polygon, fill=fill)

                elif "bbox" in _annotation:
                    bbox = _annotation["bbox"]
                    draw.rectangle(bbox, fill="white")

            masks.append(mask_image)

        return masks

    def prepare_bounding_boxes(self, images, annotations):
        outputs = []
        for image, annotation in zip(images, annotations):
            image_copy = image.copy()
            draw = ImageDraw.Draw(image_copy)
            for _, _annotation in annotation.items():
                bbox = _annotation["bbox"]
                label = _annotation["label"]

                draw.rectangle(bbox, outline="red", width=3)
                draw.text((bbox[0], bbox[1] - 20), label, fill="red")

            outputs.append(image_copy)

        return outputs

    def prepare_inputs(self, images, prompts):
        prompts = prompts or ""

        if isinstance(images, Image.Image):
            images = [images]
        if isinstance(prompts, str):
            prompts = [prompts]

        if len(images) != len(prompts):
            raise ValueError("Number of images and annotation prompts must match.")

        return images, prompts

    @torch.no_grad()
    def __call__(self, components, state: PipelineState) -> PipelineState:
        block_state = self.get_block_state(state)
        images, annotation_task_prompt = self.prepare_inputs(
            block_state.image, block_state.annotation_prompt
        )
        task = block_state.annotation_task
        fill = block_state.fill

        annotations = self.get_annotations(
            components, images, annotation_task_prompt, task
        )
        block_state.annotations = annotations
        if block_state.annotation_output_type == "mask_image":
            block_state.mask_image = self.prepare_mask(images, annotations)
        else:
            block_state.mask_image = None

        if block_state.annotation_output_type == "mask_overlay":
            block_state.image = self.prepare_mask(images, annotations, overlay=True, fill=fill)

        elif block_state.annotation_output_type == "bounding_box":
            block_state.image = self.prepare_bounding_boxes(images, annotations)

        self.set_block_state(state, block_state)

        return components, state

Save the custom block to the Hub, from either the CLI or with the [push_to_hub] method, so you can easily share and reuse it.

  1. From the CLI
# In the folder with the `block.py` file, run:
diffusers-cli custom_block

Then upload the block to the Hub:

hf upload <your repo id> . .
  1. From Python
from block import Florence2ImageAnnotatorBlock
block = Florence2ImageAnnotatorBlock()
block.push_to_hub("<your repo id>")

Load the custom block with [~ModularPipelineBlocks.from_pretrained] and set trust_remote_code=True.

import torch
from diffusers.modular_pipelines import ModularPipelineBlocks, SequentialPipelineBlocks
from diffusers.modular_pipelines.stable_diffusion_xl import INPAINT_BLOCKS
from diffusers.utils import load_image

# Fetch the Florence2 image annotator block that will create our mask
image_annotator_block = ModularPipelineBlocks.from_pretrained("diffusers/florence-2-custom-block", trust_remote_code=True)

my_blocks = INPAINT_BLOCKS.copy()
# insert the annotation block before the image encoding step
my_blocks.insert("image_annotator", image_annotator_block, 1)

# Create our initial set of inpainting blocks
blocks = SequentialPipelineBlocks.from_blocks_dict(my_blocks)

repo_id = "diffusers/modular-stable-diffusion-xl-base-1.0"
pipe = blocks.init_pipeline(repo_id)
pipe.load_components(torch_dtype=torch.float16, device_map="cuda", trust_remote_code=True)

image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true")
image = image.resize((1024, 1024))

prompt = ["A red car"]
annotation_task = "<REFERRING_EXPRESSION_SEGMENTATION>"
annotation_prompt = ["the car"]

output = pipe(
    prompt=prompt,
    image=image,
    annotation_task=annotation_task,
    annotation_prompt=annotation_prompt,
    annotation_output_type="mask_image",
    num_inference_steps=35,
    guidance_scale=7.5,
    strength=0.95,
    output="images"
)
output[0].save("florence-inpainting.png")

Editing Custom Blocks

By default, custom blocks are saved in your cache directory. To download and edit a custom block you can use the local_dir argument to save the block to a specific folder.

import torch
from diffusers.modular_pipelines import ModularPipelineBlocks, SequentialPipelineBlocks
from diffusers.modular_pipelines.stable_diffusion_xl import INPAINT_BLOCKS
from diffusers.utils import load_image

# Fetch the Florence2 image annotator block that will create our mask
image_annotator_block = ModularPipelineBlocks.from_pretrained("diffusers/florence-2-custom-block", trust_remote_code=True, local_dir="/my-local-folder")

Any changes made to the block files to the blocks in this file will be reflected when you load the block again.