1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/tests/quantization/utils.py
Yao Matrix eef3d65954 enable 2 test cases on XPU (#11332)
* enable 2 test cases on XPU

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* Apply style fixes

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2025-04-17 13:27:41 -10:00

45 lines
1.6 KiB
Python

from diffusers.utils import is_torch_available
from diffusers.utils.testing_utils import (
backend_empty_cache,
backend_max_memory_allocated,
backend_reset_peak_memory_stats,
torch_device,
)
if is_torch_available():
import torch
import torch.nn as nn
class LoRALayer(nn.Module):
"""Wraps a linear layer with LoRA-like adapter - Used for testing purposes only
Taken from
https://github.com/huggingface/transformers/blob/566302686a71de14125717dea9a6a45b24d42b37/tests/quantization/bnb/test_4bit.py#L62C5-L78C77
"""
def __init__(self, module: nn.Module, rank: int):
super().__init__()
self.module = module
self.adapter = nn.Sequential(
nn.Linear(module.in_features, rank, bias=False),
nn.Linear(rank, module.out_features, bias=False),
)
small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5
nn.init.normal_(self.adapter[0].weight, std=small_std)
nn.init.zeros_(self.adapter[1].weight)
self.adapter.to(module.weight.device)
def forward(self, input, *args, **kwargs):
return self.module(input, *args, **kwargs) + self.adapter(input)
@torch.no_grad()
@torch.inference_mode()
def get_memory_consumption_stat(model, inputs):
backend_reset_peak_memory_stats(torch_device)
backend_empty_cache(torch_device)
model(**inputs)
max_mem_allocated = backend_max_memory_allocated(torch_device)
return max_mem_allocated