1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/docs/source/en/optimization/opt_overview.md
M. Tolga Cangöz 442017ccc8 [Docs] Fix typos (#5583)
* Add Copyright info

* Fix typos, improve, update

* Update deepfloyd_if.md

* Update ldm3d_diffusion.md

* Update opt_overview.md
2023-10-31 10:04:08 -07:00

1.5 KiB

Overview

Generating high-quality outputs is computationally intensive, especially during each iterative step where you go from a noisy output to a less noisy output. One of 🤗 Diffuser's goals is to make this technology widely accessible to everyone, which includes enabling fast inference on consumer and specialized hardware.

This section will cover tips and tricks - like half-precision weights and sliced attention - for optimizing inference speed and reducing memory-consumption. You'll also learn how to speed up your PyTorch code with torch.compile or ONNX Runtime, and enable memory-efficient attention with xFormers. There are also guides for running inference on specific hardware like Apple Silicon, and Intel or Habana processors.