mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
1153 lines
44 KiB
Python
1153 lines
44 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
|
|
import argparse
|
|
import logging
|
|
import math
|
|
import os
|
|
import random
|
|
import time
|
|
from pathlib import Path
|
|
|
|
import jax
|
|
import jax.numpy as jnp
|
|
import numpy as np
|
|
import optax
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
import transformers
|
|
from datasets import load_dataset, load_from_disk
|
|
from flax import jax_utils
|
|
from flax.core.frozen_dict import unfreeze
|
|
from flax.training import train_state
|
|
from flax.training.common_utils import shard
|
|
from huggingface_hub import create_repo, upload_folder
|
|
from PIL import Image, PngImagePlugin
|
|
from torch.utils.data import IterableDataset
|
|
from torchvision import transforms
|
|
from tqdm.auto import tqdm
|
|
from transformers import CLIPTokenizer, FlaxCLIPTextModel, set_seed
|
|
|
|
from diffusers import (
|
|
FlaxAutoencoderKL,
|
|
FlaxControlNetModel,
|
|
FlaxDDPMScheduler,
|
|
FlaxStableDiffusionControlNetPipeline,
|
|
FlaxUNet2DConditionModel,
|
|
)
|
|
from diffusers.utils import check_min_version, is_wandb_available, make_image_grid
|
|
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
|
|
|
|
|
|
# To prevent an error that occurs when there are abnormally large compressed data chunk in the png image
|
|
# see more https://github.com/python-pillow/Pillow/issues/5610
|
|
LARGE_ENOUGH_NUMBER = 100
|
|
PngImagePlugin.MAX_TEXT_CHUNK = LARGE_ENOUGH_NUMBER * (1024**2)
|
|
|
|
if is_wandb_available():
|
|
import wandb
|
|
|
|
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
|
check_min_version("0.28.0.dev0")
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def log_validation(pipeline, pipeline_params, controlnet_params, tokenizer, args, rng, weight_dtype):
|
|
logger.info("Running validation...")
|
|
|
|
pipeline_params = pipeline_params.copy()
|
|
pipeline_params["controlnet"] = controlnet_params
|
|
|
|
num_samples = jax.device_count()
|
|
prng_seed = jax.random.split(rng, jax.device_count())
|
|
|
|
if len(args.validation_image) == len(args.validation_prompt):
|
|
validation_images = args.validation_image
|
|
validation_prompts = args.validation_prompt
|
|
elif len(args.validation_image) == 1:
|
|
validation_images = args.validation_image * len(args.validation_prompt)
|
|
validation_prompts = args.validation_prompt
|
|
elif len(args.validation_prompt) == 1:
|
|
validation_images = args.validation_image
|
|
validation_prompts = args.validation_prompt * len(args.validation_image)
|
|
else:
|
|
raise ValueError(
|
|
"number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`"
|
|
)
|
|
|
|
image_logs = []
|
|
|
|
for validation_prompt, validation_image in zip(validation_prompts, validation_images):
|
|
prompts = num_samples * [validation_prompt]
|
|
prompt_ids = pipeline.prepare_text_inputs(prompts)
|
|
prompt_ids = shard(prompt_ids)
|
|
|
|
validation_image = Image.open(validation_image).convert("RGB")
|
|
processed_image = pipeline.prepare_image_inputs(num_samples * [validation_image])
|
|
processed_image = shard(processed_image)
|
|
images = pipeline(
|
|
prompt_ids=prompt_ids,
|
|
image=processed_image,
|
|
params=pipeline_params,
|
|
prng_seed=prng_seed,
|
|
num_inference_steps=50,
|
|
jit=True,
|
|
).images
|
|
|
|
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
|
|
images = pipeline.numpy_to_pil(images)
|
|
|
|
image_logs.append(
|
|
{"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt}
|
|
)
|
|
|
|
if args.report_to == "wandb":
|
|
formatted_images = []
|
|
for log in image_logs:
|
|
images = log["images"]
|
|
validation_prompt = log["validation_prompt"]
|
|
validation_image = log["validation_image"]
|
|
|
|
formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning"))
|
|
for image in images:
|
|
image = wandb.Image(image, caption=validation_prompt)
|
|
formatted_images.append(image)
|
|
|
|
wandb.log({"validation": formatted_images})
|
|
else:
|
|
logger.warning(f"image logging not implemented for {args.report_to}")
|
|
|
|
return image_logs
|
|
|
|
|
|
def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None):
|
|
img_str = ""
|
|
if image_logs is not None:
|
|
for i, log in enumerate(image_logs):
|
|
images = log["images"]
|
|
validation_prompt = log["validation_prompt"]
|
|
validation_image = log["validation_image"]
|
|
validation_image.save(os.path.join(repo_folder, "image_control.png"))
|
|
img_str += f"prompt: {validation_prompt}\n"
|
|
images = [validation_image] + images
|
|
make_image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png"))
|
|
img_str += f"\n"
|
|
|
|
model_description = f"""
|
|
# controlnet- {repo_id}
|
|
|
|
These are controlnet weights trained on {base_model} with new type of conditioning. You can find some example images in the following. \n
|
|
{img_str}
|
|
"""
|
|
|
|
model_card = load_or_create_model_card(
|
|
repo_id_or_path=repo_id,
|
|
from_training=True,
|
|
license="creativeml-openrail-m",
|
|
base_model=base_model,
|
|
model_description=model_description,
|
|
inference=True,
|
|
)
|
|
|
|
tags = [
|
|
"stable-diffusion",
|
|
"stable-diffusion-diffusers",
|
|
"text-to-image",
|
|
"diffusers",
|
|
"controlnet",
|
|
"jax-diffusers-event",
|
|
"diffusers-training",
|
|
]
|
|
model_card = populate_model_card(model_card, tags=tags)
|
|
|
|
model_card.save(os.path.join(repo_folder, "README.md"))
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
|
parser.add_argument(
|
|
"--pretrained_model_name_or_path",
|
|
type=str,
|
|
required=True,
|
|
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
|
)
|
|
parser.add_argument(
|
|
"--controlnet_model_name_or_path",
|
|
type=str,
|
|
default=None,
|
|
help="Path to pretrained controlnet model or model identifier from huggingface.co/models."
|
|
" If not specified controlnet weights are initialized from unet.",
|
|
)
|
|
parser.add_argument(
|
|
"--revision",
|
|
type=str,
|
|
default=None,
|
|
help="Revision of pretrained model identifier from huggingface.co/models.",
|
|
)
|
|
parser.add_argument(
|
|
"--from_pt",
|
|
action="store_true",
|
|
help="Load the pretrained model from a PyTorch checkpoint.",
|
|
)
|
|
parser.add_argument(
|
|
"--controlnet_revision",
|
|
type=str,
|
|
default=None,
|
|
help="Revision of controlnet model identifier from huggingface.co/models.",
|
|
)
|
|
parser.add_argument(
|
|
"--profile_steps",
|
|
type=int,
|
|
default=0,
|
|
help="How many training steps to profile in the beginning.",
|
|
)
|
|
parser.add_argument(
|
|
"--profile_validation",
|
|
action="store_true",
|
|
help="Whether to profile the (last) validation.",
|
|
)
|
|
parser.add_argument(
|
|
"--profile_memory",
|
|
action="store_true",
|
|
help="Whether to dump an initial (before training loop) and a final (at program end) memory profile.",
|
|
)
|
|
parser.add_argument(
|
|
"--ccache",
|
|
type=str,
|
|
default=None,
|
|
help="Enables compilation cache.",
|
|
)
|
|
parser.add_argument(
|
|
"--controlnet_from_pt",
|
|
action="store_true",
|
|
help="Load the controlnet model from a PyTorch checkpoint.",
|
|
)
|
|
parser.add_argument(
|
|
"--tokenizer_name",
|
|
type=str,
|
|
default=None,
|
|
help="Pretrained tokenizer name or path if not the same as model_name",
|
|
)
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
type=str,
|
|
default="runs/{timestamp}",
|
|
help="The output directory where the model predictions and checkpoints will be written. "
|
|
"Can contain placeholders: {timestamp}.",
|
|
)
|
|
parser.add_argument(
|
|
"--cache_dir",
|
|
type=str,
|
|
default=None,
|
|
help="The directory where the downloaded models and datasets will be stored.",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.")
|
|
parser.add_argument(
|
|
"--resolution",
|
|
type=int,
|
|
default=512,
|
|
help=(
|
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
|
" resolution"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--train_batch_size", type=int, default=1, help="Batch size (per device) for the training dataloader."
|
|
)
|
|
parser.add_argument("--num_train_epochs", type=int, default=100)
|
|
parser.add_argument(
|
|
"--max_train_steps",
|
|
type=int,
|
|
default=None,
|
|
help="Total number of training steps to perform.",
|
|
)
|
|
parser.add_argument(
|
|
"--checkpointing_steps",
|
|
type=int,
|
|
default=5000,
|
|
help=("Save a checkpoint of the training state every X updates."),
|
|
)
|
|
parser.add_argument(
|
|
"--learning_rate",
|
|
type=float,
|
|
default=1e-4,
|
|
help="Initial learning rate (after the potential warmup period) to use.",
|
|
)
|
|
parser.add_argument(
|
|
"--scale_lr",
|
|
action="store_true",
|
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
|
)
|
|
parser.add_argument(
|
|
"--lr_scheduler",
|
|
type=str,
|
|
default="constant",
|
|
help=(
|
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
|
' "constant", "constant_with_warmup"]'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--snr_gamma",
|
|
type=float,
|
|
default=None,
|
|
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
|
|
"More details here: https://arxiv.org/abs/2303.09556.",
|
|
)
|
|
parser.add_argument(
|
|
"--dataloader_num_workers",
|
|
type=int,
|
|
default=0,
|
|
help=(
|
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
|
),
|
|
)
|
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
|
parser.add_argument(
|
|
"--hub_model_id",
|
|
type=str,
|
|
default=None,
|
|
help="The name of the repository to keep in sync with the local `output_dir`.",
|
|
)
|
|
parser.add_argument(
|
|
"--logging_steps",
|
|
type=int,
|
|
default=100,
|
|
help=("log training metric every X steps to `--report_t`"),
|
|
)
|
|
parser.add_argument(
|
|
"--report_to",
|
|
type=str,
|
|
default="wandb",
|
|
help=('The integration to report the results and logs to. Currently only supported platforms are `"wandb"`'),
|
|
)
|
|
parser.add_argument(
|
|
"--mixed_precision",
|
|
type=str,
|
|
default="no",
|
|
choices=["no", "fp16", "bf16"],
|
|
help=(
|
|
"Whether to use mixed precision. Choose"
|
|
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
|
|
"and an Nvidia Ampere GPU."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--dataset_name",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
|
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
|
|
" or to a folder containing files that 🤗 Datasets can understand."
|
|
),
|
|
)
|
|
parser.add_argument("--streaming", action="store_true", help="To stream a large dataset from Hub.")
|
|
parser.add_argument(
|
|
"--dataset_config_name",
|
|
type=str,
|
|
default=None,
|
|
help="The config of the Dataset, leave as None if there's only one config.",
|
|
)
|
|
parser.add_argument(
|
|
"--train_data_dir",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"A folder containing the training dataset. By default it will use `load_dataset` method to load a custom dataset from the folder."
|
|
"Folder must contain a dataset script as described here https://huggingface.co/docs/datasets/dataset_script) ."
|
|
"If `--load_from_disk` flag is passed, it will use `load_from_disk` method instead. Ignored if `dataset_name` is specified."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--load_from_disk",
|
|
action="store_true",
|
|
help=(
|
|
"If True, will load a dataset that was previously saved using `save_to_disk` from `--train_data_dir`"
|
|
"See more https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.load_from_disk"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--image_column", type=str, default="image", help="The column of the dataset containing the target image."
|
|
)
|
|
parser.add_argument(
|
|
"--conditioning_image_column",
|
|
type=str,
|
|
default="conditioning_image",
|
|
help="The column of the dataset containing the controlnet conditioning image.",
|
|
)
|
|
parser.add_argument(
|
|
"--caption_column",
|
|
type=str,
|
|
default="text",
|
|
help="The column of the dataset containing a caption or a list of captions.",
|
|
)
|
|
parser.add_argument(
|
|
"--max_train_samples",
|
|
type=int,
|
|
default=None,
|
|
help=(
|
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set. Needed if `streaming` is set to True."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--proportion_empty_prompts",
|
|
type=float,
|
|
default=0,
|
|
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).",
|
|
)
|
|
parser.add_argument(
|
|
"--validation_prompt",
|
|
type=str,
|
|
default=None,
|
|
nargs="+",
|
|
help=(
|
|
"A set of prompts evaluated every `--validation_steps` and logged to `--report_to`."
|
|
" Provide either a matching number of `--validation_image`s, a single `--validation_image`"
|
|
" to be used with all prompts, or a single prompt that will be used with all `--validation_image`s."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--validation_image",
|
|
type=str,
|
|
default=None,
|
|
nargs="+",
|
|
help=(
|
|
"A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`"
|
|
" and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a"
|
|
" a single `--validation_prompt` to be used with all `--validation_image`s, or a single"
|
|
" `--validation_image` that will be used with all `--validation_prompt`s."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--validation_steps",
|
|
type=int,
|
|
default=100,
|
|
help=(
|
|
"Run validation every X steps. Validation consists of running the prompt"
|
|
" `args.validation_prompt` and logging the images."
|
|
),
|
|
)
|
|
parser.add_argument("--wandb_entity", type=str, default=None, help=("The wandb entity to use (for teams)."))
|
|
parser.add_argument(
|
|
"--tracker_project_name",
|
|
type=str,
|
|
default="train_controlnet_flax",
|
|
help=("The `project` argument passed to wandb"),
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_accumulation_steps", type=int, default=1, help="Number of steps to accumulate gradients over"
|
|
)
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
|
|
|
args = parser.parse_args()
|
|
args.output_dir = args.output_dir.replace("{timestamp}", time.strftime("%Y%m%d_%H%M%S"))
|
|
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
|
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
|
args.local_rank = env_local_rank
|
|
|
|
# Sanity checks
|
|
if args.dataset_name is None and args.train_data_dir is None:
|
|
raise ValueError("Need either a dataset name or a training folder.")
|
|
if args.dataset_name is not None and args.train_data_dir is not None:
|
|
raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`")
|
|
|
|
if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1:
|
|
raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].")
|
|
|
|
if args.validation_prompt is not None and args.validation_image is None:
|
|
raise ValueError("`--validation_image` must be set if `--validation_prompt` is set")
|
|
|
|
if args.validation_prompt is None and args.validation_image is not None:
|
|
raise ValueError("`--validation_prompt` must be set if `--validation_image` is set")
|
|
|
|
if (
|
|
args.validation_image is not None
|
|
and args.validation_prompt is not None
|
|
and len(args.validation_image) != 1
|
|
and len(args.validation_prompt) != 1
|
|
and len(args.validation_image) != len(args.validation_prompt)
|
|
):
|
|
raise ValueError(
|
|
"Must provide either 1 `--validation_image`, 1 `--validation_prompt`,"
|
|
" or the same number of `--validation_prompt`s and `--validation_image`s"
|
|
)
|
|
|
|
# This idea comes from
|
|
# https://github.com/borisdayma/dalle-mini/blob/d2be512d4a6a9cda2d63ba04afc33038f98f705f/src/dalle_mini/data.py#L370
|
|
if args.streaming and args.max_train_samples is None:
|
|
raise ValueError("You must specify `max_train_samples` when using dataset streaming.")
|
|
|
|
return args
|
|
|
|
|
|
def make_train_dataset(args, tokenizer, batch_size=None):
|
|
# Get the datasets: you can either provide your own training and evaluation files (see below)
|
|
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
|
|
|
|
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
|
|
# download the dataset.
|
|
if args.dataset_name is not None:
|
|
# Downloading and loading a dataset from the hub.
|
|
dataset = load_dataset(
|
|
args.dataset_name,
|
|
args.dataset_config_name,
|
|
cache_dir=args.cache_dir,
|
|
streaming=args.streaming,
|
|
)
|
|
else:
|
|
if args.train_data_dir is not None:
|
|
if args.load_from_disk:
|
|
dataset = load_from_disk(
|
|
args.train_data_dir,
|
|
)
|
|
else:
|
|
dataset = load_dataset(
|
|
args.train_data_dir,
|
|
cache_dir=args.cache_dir,
|
|
)
|
|
# See more about loading custom images at
|
|
# https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script
|
|
|
|
# Preprocessing the datasets.
|
|
# We need to tokenize inputs and targets.
|
|
if isinstance(dataset["train"], IterableDataset):
|
|
column_names = next(iter(dataset["train"])).keys()
|
|
else:
|
|
column_names = dataset["train"].column_names
|
|
|
|
# 6. Get the column names for input/target.
|
|
if args.image_column is None:
|
|
image_column = column_names[0]
|
|
logger.info(f"image column defaulting to {image_column}")
|
|
else:
|
|
image_column = args.image_column
|
|
if image_column not in column_names:
|
|
raise ValueError(
|
|
f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
|
|
)
|
|
|
|
if args.caption_column is None:
|
|
caption_column = column_names[1]
|
|
logger.info(f"caption column defaulting to {caption_column}")
|
|
else:
|
|
caption_column = args.caption_column
|
|
if caption_column not in column_names:
|
|
raise ValueError(
|
|
f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
|
|
)
|
|
|
|
if args.conditioning_image_column is None:
|
|
conditioning_image_column = column_names[2]
|
|
logger.info(f"conditioning image column defaulting to {caption_column}")
|
|
else:
|
|
conditioning_image_column = args.conditioning_image_column
|
|
if conditioning_image_column not in column_names:
|
|
raise ValueError(
|
|
f"`--conditioning_image_column` value '{args.conditioning_image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
|
|
)
|
|
|
|
def tokenize_captions(examples, is_train=True):
|
|
captions = []
|
|
for caption in examples[caption_column]:
|
|
if random.random() < args.proportion_empty_prompts:
|
|
captions.append("")
|
|
elif isinstance(caption, str):
|
|
captions.append(caption)
|
|
elif isinstance(caption, (list, np.ndarray)):
|
|
# take a random caption if there are multiple
|
|
captions.append(random.choice(caption) if is_train else caption[0])
|
|
else:
|
|
raise ValueError(
|
|
f"Caption column `{caption_column}` should contain either strings or lists of strings."
|
|
)
|
|
inputs = tokenizer(
|
|
captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
|
|
)
|
|
return inputs.input_ids
|
|
|
|
image_transforms = transforms.Compose(
|
|
[
|
|
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
|
|
transforms.CenterCrop(args.resolution),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize([0.5], [0.5]),
|
|
]
|
|
)
|
|
|
|
conditioning_image_transforms = transforms.Compose(
|
|
[
|
|
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
|
|
transforms.CenterCrop(args.resolution),
|
|
transforms.ToTensor(),
|
|
]
|
|
)
|
|
|
|
def preprocess_train(examples):
|
|
images = [image.convert("RGB") for image in examples[image_column]]
|
|
images = [image_transforms(image) for image in images]
|
|
|
|
conditioning_images = [image.convert("RGB") for image in examples[conditioning_image_column]]
|
|
conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images]
|
|
|
|
examples["pixel_values"] = images
|
|
examples["conditioning_pixel_values"] = conditioning_images
|
|
examples["input_ids"] = tokenize_captions(examples)
|
|
|
|
return examples
|
|
|
|
if jax.process_index() == 0:
|
|
if args.max_train_samples is not None:
|
|
if args.streaming:
|
|
dataset["train"] = dataset["train"].shuffle(seed=args.seed).take(args.max_train_samples)
|
|
else:
|
|
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
|
|
# Set the training transforms
|
|
if args.streaming:
|
|
train_dataset = dataset["train"].map(
|
|
preprocess_train,
|
|
batched=True,
|
|
batch_size=batch_size,
|
|
remove_columns=list(dataset["train"].features.keys()),
|
|
)
|
|
else:
|
|
train_dataset = dataset["train"].with_transform(preprocess_train)
|
|
|
|
return train_dataset
|
|
|
|
|
|
def collate_fn(examples):
|
|
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
|
|
|
conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples])
|
|
conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float()
|
|
|
|
input_ids = torch.stack([example["input_ids"] for example in examples])
|
|
|
|
batch = {
|
|
"pixel_values": pixel_values,
|
|
"conditioning_pixel_values": conditioning_pixel_values,
|
|
"input_ids": input_ids,
|
|
}
|
|
batch = {k: v.numpy() for k, v in batch.items()}
|
|
return batch
|
|
|
|
|
|
def get_params_to_save(params):
|
|
return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params))
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
if args.report_to == "wandb" and args.hub_token is not None:
|
|
raise ValueError(
|
|
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
|
|
" Please use `huggingface-cli login` to authenticate with the Hub."
|
|
)
|
|
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO,
|
|
)
|
|
# Setup logging, we only want one process per machine to log things on the screen.
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
|
if jax.process_index() == 0:
|
|
transformers.utils.logging.set_verbosity_info()
|
|
else:
|
|
transformers.utils.logging.set_verbosity_error()
|
|
|
|
# wandb init
|
|
if jax.process_index() == 0 and args.report_to == "wandb":
|
|
wandb.init(
|
|
entity=args.wandb_entity,
|
|
project=args.tracker_project_name,
|
|
job_type="train",
|
|
config=args,
|
|
)
|
|
|
|
if args.seed is not None:
|
|
set_seed(args.seed)
|
|
|
|
rng = jax.random.PRNGKey(0)
|
|
|
|
# Handle the repository creation
|
|
if jax.process_index() == 0:
|
|
if args.output_dir is not None:
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
if args.push_to_hub:
|
|
repo_id = create_repo(
|
|
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
|
|
).repo_id
|
|
|
|
# Load the tokenizer and add the placeholder token as a additional special token
|
|
if args.tokenizer_name:
|
|
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
|
|
elif args.pretrained_model_name_or_path:
|
|
tokenizer = CLIPTokenizer.from_pretrained(
|
|
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
|
|
)
|
|
else:
|
|
raise NotImplementedError("No tokenizer specified!")
|
|
|
|
# Get the datasets: you can either provide your own training and evaluation files (see below)
|
|
total_train_batch_size = args.train_batch_size * jax.local_device_count() * args.gradient_accumulation_steps
|
|
train_dataset = make_train_dataset(args, tokenizer, batch_size=total_train_batch_size)
|
|
|
|
train_dataloader = torch.utils.data.DataLoader(
|
|
train_dataset,
|
|
shuffle=not args.streaming,
|
|
collate_fn=collate_fn,
|
|
batch_size=total_train_batch_size,
|
|
num_workers=args.dataloader_num_workers,
|
|
drop_last=True,
|
|
)
|
|
|
|
weight_dtype = jnp.float32
|
|
if args.mixed_precision == "fp16":
|
|
weight_dtype = jnp.float16
|
|
elif args.mixed_precision == "bf16":
|
|
weight_dtype = jnp.bfloat16
|
|
|
|
# Load models and create wrapper for stable diffusion
|
|
text_encoder = FlaxCLIPTextModel.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
subfolder="text_encoder",
|
|
dtype=weight_dtype,
|
|
revision=args.revision,
|
|
from_pt=args.from_pt,
|
|
)
|
|
vae, vae_params = FlaxAutoencoderKL.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
revision=args.revision,
|
|
subfolder="vae",
|
|
dtype=weight_dtype,
|
|
from_pt=args.from_pt,
|
|
)
|
|
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
subfolder="unet",
|
|
dtype=weight_dtype,
|
|
revision=args.revision,
|
|
from_pt=args.from_pt,
|
|
)
|
|
|
|
if args.controlnet_model_name_or_path:
|
|
logger.info("Loading existing controlnet weights")
|
|
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
|
|
args.controlnet_model_name_or_path,
|
|
revision=args.controlnet_revision,
|
|
from_pt=args.controlnet_from_pt,
|
|
dtype=jnp.float32,
|
|
)
|
|
else:
|
|
logger.info("Initializing controlnet weights from unet")
|
|
rng, rng_params = jax.random.split(rng)
|
|
|
|
controlnet = FlaxControlNetModel(
|
|
in_channels=unet.config.in_channels,
|
|
down_block_types=unet.config.down_block_types,
|
|
only_cross_attention=unet.config.only_cross_attention,
|
|
block_out_channels=unet.config.block_out_channels,
|
|
layers_per_block=unet.config.layers_per_block,
|
|
attention_head_dim=unet.config.attention_head_dim,
|
|
cross_attention_dim=unet.config.cross_attention_dim,
|
|
use_linear_projection=unet.config.use_linear_projection,
|
|
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
|
freq_shift=unet.config.freq_shift,
|
|
)
|
|
controlnet_params = controlnet.init_weights(rng=rng_params)
|
|
controlnet_params = unfreeze(controlnet_params)
|
|
for key in [
|
|
"conv_in",
|
|
"time_embedding",
|
|
"down_blocks_0",
|
|
"down_blocks_1",
|
|
"down_blocks_2",
|
|
"down_blocks_3",
|
|
"mid_block",
|
|
]:
|
|
controlnet_params[key] = unet_params[key]
|
|
|
|
pipeline, pipeline_params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
tokenizer=tokenizer,
|
|
controlnet=controlnet,
|
|
safety_checker=None,
|
|
dtype=weight_dtype,
|
|
revision=args.revision,
|
|
from_pt=args.from_pt,
|
|
)
|
|
pipeline_params = jax_utils.replicate(pipeline_params)
|
|
|
|
# Optimization
|
|
if args.scale_lr:
|
|
args.learning_rate = args.learning_rate * total_train_batch_size
|
|
|
|
constant_scheduler = optax.constant_schedule(args.learning_rate)
|
|
|
|
adamw = optax.adamw(
|
|
learning_rate=constant_scheduler,
|
|
b1=args.adam_beta1,
|
|
b2=args.adam_beta2,
|
|
eps=args.adam_epsilon,
|
|
weight_decay=args.adam_weight_decay,
|
|
)
|
|
|
|
optimizer = optax.chain(
|
|
optax.clip_by_global_norm(args.max_grad_norm),
|
|
adamw,
|
|
)
|
|
|
|
state = train_state.TrainState.create(apply_fn=controlnet.__call__, params=controlnet_params, tx=optimizer)
|
|
|
|
noise_scheduler, noise_scheduler_state = FlaxDDPMScheduler.from_pretrained(
|
|
args.pretrained_model_name_or_path, subfolder="scheduler"
|
|
)
|
|
|
|
# Initialize our training
|
|
validation_rng, train_rngs = jax.random.split(rng)
|
|
train_rngs = jax.random.split(train_rngs, jax.local_device_count())
|
|
|
|
def compute_snr(timesteps):
|
|
"""
|
|
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
|
|
"""
|
|
alphas_cumprod = noise_scheduler_state.common.alphas_cumprod
|
|
sqrt_alphas_cumprod = alphas_cumprod**0.5
|
|
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
|
|
|
|
alpha = sqrt_alphas_cumprod[timesteps]
|
|
sigma = sqrt_one_minus_alphas_cumprod[timesteps]
|
|
# Compute SNR.
|
|
snr = (alpha / sigma) ** 2
|
|
return snr
|
|
|
|
def train_step(state, unet_params, text_encoder_params, vae_params, batch, train_rng):
|
|
# reshape batch, add grad_step_dim if gradient_accumulation_steps > 1
|
|
if args.gradient_accumulation_steps > 1:
|
|
grad_steps = args.gradient_accumulation_steps
|
|
batch = jax.tree_map(lambda x: x.reshape((grad_steps, x.shape[0] // grad_steps) + x.shape[1:]), batch)
|
|
|
|
def compute_loss(params, minibatch, sample_rng):
|
|
# Convert images to latent space
|
|
vae_outputs = vae.apply(
|
|
{"params": vae_params}, minibatch["pixel_values"], deterministic=True, method=vae.encode
|
|
)
|
|
latents = vae_outputs.latent_dist.sample(sample_rng)
|
|
# (NHWC) -> (NCHW)
|
|
latents = jnp.transpose(latents, (0, 3, 1, 2))
|
|
latents = latents * vae.config.scaling_factor
|
|
|
|
# Sample noise that we'll add to the latents
|
|
noise_rng, timestep_rng = jax.random.split(sample_rng)
|
|
noise = jax.random.normal(noise_rng, latents.shape)
|
|
# Sample a random timestep for each image
|
|
bsz = latents.shape[0]
|
|
timesteps = jax.random.randint(
|
|
timestep_rng,
|
|
(bsz,),
|
|
0,
|
|
noise_scheduler.config.num_train_timesteps,
|
|
)
|
|
|
|
# Add noise to the latents according to the noise magnitude at each timestep
|
|
# (this is the forward diffusion process)
|
|
noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps)
|
|
|
|
# Get the text embedding for conditioning
|
|
encoder_hidden_states = text_encoder(
|
|
minibatch["input_ids"],
|
|
params=text_encoder_params,
|
|
train=False,
|
|
)[0]
|
|
|
|
controlnet_cond = minibatch["conditioning_pixel_values"]
|
|
|
|
# Predict the noise residual and compute loss
|
|
down_block_res_samples, mid_block_res_sample = controlnet.apply(
|
|
{"params": params},
|
|
noisy_latents,
|
|
timesteps,
|
|
encoder_hidden_states,
|
|
controlnet_cond,
|
|
train=True,
|
|
return_dict=False,
|
|
)
|
|
|
|
model_pred = unet.apply(
|
|
{"params": unet_params},
|
|
noisy_latents,
|
|
timesteps,
|
|
encoder_hidden_states,
|
|
down_block_additional_residuals=down_block_res_samples,
|
|
mid_block_additional_residual=mid_block_res_sample,
|
|
).sample
|
|
|
|
# Get the target for loss depending on the prediction type
|
|
if noise_scheduler.config.prediction_type == "epsilon":
|
|
target = noise
|
|
elif noise_scheduler.config.prediction_type == "v_prediction":
|
|
target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps)
|
|
else:
|
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
|
|
|
loss = (target - model_pred) ** 2
|
|
|
|
if args.snr_gamma is not None:
|
|
snr = jnp.array(compute_snr(timesteps))
|
|
snr_loss_weights = jnp.where(snr < args.snr_gamma, snr, jnp.ones_like(snr) * args.snr_gamma)
|
|
if noise_scheduler.config.prediction_type == "epsilon":
|
|
snr_loss_weights = snr_loss_weights / snr
|
|
elif noise_scheduler.config.prediction_type == "v_prediction":
|
|
snr_loss_weights = snr_loss_weights / (snr + 1)
|
|
|
|
loss = loss * snr_loss_weights
|
|
|
|
loss = loss.mean()
|
|
|
|
return loss
|
|
|
|
grad_fn = jax.value_and_grad(compute_loss)
|
|
|
|
# get a minibatch (one gradient accumulation slice)
|
|
def get_minibatch(batch, grad_idx):
|
|
return jax.tree_util.tree_map(
|
|
lambda x: jax.lax.dynamic_index_in_dim(x, grad_idx, keepdims=False),
|
|
batch,
|
|
)
|
|
|
|
def loss_and_grad(grad_idx, train_rng):
|
|
# create minibatch for the grad step
|
|
minibatch = get_minibatch(batch, grad_idx) if grad_idx is not None else batch
|
|
sample_rng, train_rng = jax.random.split(train_rng, 2)
|
|
loss, grad = grad_fn(state.params, minibatch, sample_rng)
|
|
return loss, grad, train_rng
|
|
|
|
if args.gradient_accumulation_steps == 1:
|
|
loss, grad, new_train_rng = loss_and_grad(None, train_rng)
|
|
else:
|
|
init_loss_grad_rng = (
|
|
0.0, # initial value for cumul_loss
|
|
jax.tree_map(jnp.zeros_like, state.params), # initial value for cumul_grad
|
|
train_rng, # initial value for train_rng
|
|
)
|
|
|
|
def cumul_grad_step(grad_idx, loss_grad_rng):
|
|
cumul_loss, cumul_grad, train_rng = loss_grad_rng
|
|
loss, grad, new_train_rng = loss_and_grad(grad_idx, train_rng)
|
|
cumul_loss, cumul_grad = jax.tree_map(jnp.add, (cumul_loss, cumul_grad), (loss, grad))
|
|
return cumul_loss, cumul_grad, new_train_rng
|
|
|
|
loss, grad, new_train_rng = jax.lax.fori_loop(
|
|
0,
|
|
args.gradient_accumulation_steps,
|
|
cumul_grad_step,
|
|
init_loss_grad_rng,
|
|
)
|
|
loss, grad = jax.tree_map(lambda x: x / args.gradient_accumulation_steps, (loss, grad))
|
|
|
|
grad = jax.lax.pmean(grad, "batch")
|
|
|
|
new_state = state.apply_gradients(grads=grad)
|
|
|
|
metrics = {"loss": loss}
|
|
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
|
|
|
def l2(xs):
|
|
return jnp.sqrt(sum([jnp.vdot(x, x) for x in jax.tree_util.tree_leaves(xs)]))
|
|
|
|
metrics["l2_grads"] = l2(jax.tree_util.tree_leaves(grad))
|
|
|
|
return new_state, metrics, new_train_rng
|
|
|
|
# Create parallel version of the train step
|
|
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
|
|
|
|
# Replicate the train state on each device
|
|
state = jax_utils.replicate(state)
|
|
unet_params = jax_utils.replicate(unet_params)
|
|
text_encoder_params = jax_utils.replicate(text_encoder.params)
|
|
vae_params = jax_utils.replicate(vae_params)
|
|
|
|
# Train!
|
|
if args.streaming:
|
|
dataset_length = args.max_train_samples
|
|
else:
|
|
dataset_length = len(train_dataloader)
|
|
num_update_steps_per_epoch = math.ceil(dataset_length / args.gradient_accumulation_steps)
|
|
|
|
# Scheduler and math around the number of training steps.
|
|
if args.max_train_steps is None:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
|
|
logger.info("***** Running training *****")
|
|
logger.info(f" Num examples = {args.max_train_samples if args.streaming else len(train_dataset)}")
|
|
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
|
logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}")
|
|
logger.info(f" Total optimization steps = {args.num_train_epochs * num_update_steps_per_epoch}")
|
|
|
|
if jax.process_index() == 0 and args.report_to == "wandb":
|
|
wandb.define_metric("*", step_metric="train/step")
|
|
wandb.define_metric("train/step", step_metric="walltime")
|
|
wandb.config.update(
|
|
{
|
|
"num_train_examples": args.max_train_samples if args.streaming else len(train_dataset),
|
|
"total_train_batch_size": total_train_batch_size,
|
|
"total_optimization_step": args.num_train_epochs * num_update_steps_per_epoch,
|
|
"num_devices": jax.device_count(),
|
|
"controlnet_params": sum(np.prod(x.shape) for x in jax.tree_util.tree_leaves(state.params)),
|
|
}
|
|
)
|
|
|
|
global_step = step0 = 0
|
|
epochs = tqdm(
|
|
range(args.num_train_epochs),
|
|
desc="Epoch ... ",
|
|
position=0,
|
|
disable=jax.process_index() > 0,
|
|
)
|
|
if args.profile_memory:
|
|
jax.profiler.save_device_memory_profile(os.path.join(args.output_dir, "memory_initial.prof"))
|
|
t00 = t0 = time.monotonic()
|
|
for epoch in epochs:
|
|
# ======================== Training ================================
|
|
|
|
train_metrics = []
|
|
train_metric = None
|
|
|
|
steps_per_epoch = (
|
|
args.max_train_samples // total_train_batch_size
|
|
if args.streaming or args.max_train_samples
|
|
else len(train_dataset) // total_train_batch_size
|
|
)
|
|
train_step_progress_bar = tqdm(
|
|
total=steps_per_epoch,
|
|
desc="Training...",
|
|
position=1,
|
|
leave=False,
|
|
disable=jax.process_index() > 0,
|
|
)
|
|
# train
|
|
for batch in train_dataloader:
|
|
if args.profile_steps and global_step == 1:
|
|
train_metric["loss"].block_until_ready()
|
|
jax.profiler.start_trace(args.output_dir)
|
|
if args.profile_steps and global_step == 1 + args.profile_steps:
|
|
train_metric["loss"].block_until_ready()
|
|
jax.profiler.stop_trace()
|
|
|
|
batch = shard(batch)
|
|
with jax.profiler.StepTraceAnnotation("train", step_num=global_step):
|
|
state, train_metric, train_rngs = p_train_step(
|
|
state, unet_params, text_encoder_params, vae_params, batch, train_rngs
|
|
)
|
|
train_metrics.append(train_metric)
|
|
|
|
train_step_progress_bar.update(1)
|
|
|
|
global_step += 1
|
|
if global_step >= args.max_train_steps:
|
|
break
|
|
|
|
if (
|
|
args.validation_prompt is not None
|
|
and global_step % args.validation_steps == 0
|
|
and jax.process_index() == 0
|
|
):
|
|
_ = log_validation(
|
|
pipeline, pipeline_params, state.params, tokenizer, args, validation_rng, weight_dtype
|
|
)
|
|
|
|
if global_step % args.logging_steps == 0 and jax.process_index() == 0:
|
|
if args.report_to == "wandb":
|
|
train_metrics = jax_utils.unreplicate(train_metrics)
|
|
train_metrics = jax.tree_util.tree_map(lambda *m: jnp.array(m).mean(), *train_metrics)
|
|
wandb.log(
|
|
{
|
|
"walltime": time.monotonic() - t00,
|
|
"train/step": global_step,
|
|
"train/epoch": global_step / dataset_length,
|
|
"train/steps_per_sec": (global_step - step0) / (time.monotonic() - t0),
|
|
**{f"train/{k}": v for k, v in train_metrics.items()},
|
|
}
|
|
)
|
|
t0, step0 = time.monotonic(), global_step
|
|
train_metrics = []
|
|
if global_step % args.checkpointing_steps == 0 and jax.process_index() == 0:
|
|
controlnet.save_pretrained(
|
|
f"{args.output_dir}/{global_step}",
|
|
params=get_params_to_save(state.params),
|
|
)
|
|
|
|
train_metric = jax_utils.unreplicate(train_metric)
|
|
train_step_progress_bar.close()
|
|
epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})")
|
|
|
|
# Final validation & store model.
|
|
if jax.process_index() == 0:
|
|
if args.validation_prompt is not None:
|
|
if args.profile_validation:
|
|
jax.profiler.start_trace(args.output_dir)
|
|
image_logs = log_validation(
|
|
pipeline, pipeline_params, state.params, tokenizer, args, validation_rng, weight_dtype
|
|
)
|
|
if args.profile_validation:
|
|
jax.profiler.stop_trace()
|
|
else:
|
|
image_logs = None
|
|
|
|
controlnet.save_pretrained(
|
|
args.output_dir,
|
|
params=get_params_to_save(state.params),
|
|
)
|
|
|
|
if args.push_to_hub:
|
|
save_model_card(
|
|
repo_id,
|
|
image_logs=image_logs,
|
|
base_model=args.pretrained_model_name_or_path,
|
|
repo_folder=args.output_dir,
|
|
)
|
|
upload_folder(
|
|
repo_id=repo_id,
|
|
folder_path=args.output_dir,
|
|
commit_message="End of training",
|
|
ignore_patterns=["step_*", "epoch_*"],
|
|
)
|
|
|
|
if args.profile_memory:
|
|
jax.profiler.save_device_memory_profile(os.path.join(args.output_dir, "memory_final.prof"))
|
|
logger.info("Finished training.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|